ترغب بنشر مسار تعليمي؟ اضغط هنا

A to Z of the Muon Anomalous Magnetic Moment in the MSSM with Pati-Salam at the GUT scale

47   0   0.0 ( 0 )
 نشر من قبل Patrick Schaefers
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an $A_4 times Z_5$ family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass $m_0$ and three right-handed soft masses $m_1,m_2,m_3$, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon $(g-2)_mu$. Since about two decades, $(g-2)_mu$ suffers a puzzling about 3$,sigma$ excess of the experimentally measured value over the theoretical prediction, which our model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS.



قيم البحث

اقرأ أيضاً

We analyse the experimental limits on the breaking scale of Pati-Salam extensions of the Standard Model. These arise from the experimental limits on rare-meson decay processes mediated at tree-level by the vector leptoquark in the model. This leptoqu ark ordinarily couples to to both left- and right-handed SM fermions and therefore the meson decays do not experience a helicity suppression. We find that the current limits vary from $mathcal{O}(80-2500)$ TeV depending on the choice of matrix structure appearing in the relevant three-generational charged-current interactions. We extensively analyse scenarios where additional fermionic degrees of freedom are introduced, transforming as complete Pati-Salam multiplets. These can lower the scales of Pati-Salam breaking through mass-mixing within the charged-lepton and down-quark sectors, leading to a helicity suppression of the meson decay widths which constrain Pati-Salam breaking. We find four multiplets with varying degrees of viability for this purpose: an $SU(2)_{L/R}$ bidoublet, a pair of $SU(4)$ decuplets and either a $SU(2)_L$ or $SU(2)_R$ triplet all of which contain heavy exot
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{mu}^{rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, pertu rbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, $Pi_{rm EM}^prime(0)$. The idea is based on the observation that, in the relevant kinematic domain, the integration kernel $K(s)$, entering the formula relating $a_{mu}^{rm hvp}$ to $e^{+}e^{-}$ annihilation data, behaves like $1/s$ times a very smooth function of $s$, the squared energy. We find an expression for $a_{mu}$ in terms of $Pi_{rm EM}^prime(0)$, which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for $a_{mu}^{rm hvp}$, but the precision is not yet sufficient to resolve the discrepancy between the $R(s)$ data-based results and the experimentally measured value.
The Fermi-Lab Collaboration has announced the results for the measurement of muon anomalous magnetic moment. Combining with the previous results by the BNL experiment, we have $4.2 sigma$ deviation from the Standard Model (SM), which strongly implies the new physics around 1 TeV. To explain the muon anomalous magnetic moment naturally, we analyze the corresponding five Feynman diagrams in the Supersymetric SMs (SSMs), and show that the Electroweak Supersymmetry (EWSUSY) is definitely needed. We realize the EWSUSY in the Minimal SSM (MSSM) with Genernalized Mininal Supergravity (GmSUGRA). We find large viable parameter space, which is consistent with all the current experimental constraints. In particular, the Lightest Supersymmetric Particle (LSP) neutralino can be at least as heavy as 550 GeV. Most of the viable parameter space can be probed at the future HL-LHC, while we do need the future HE-LHC to probe some viable parameter space. However, it might still be challenge if R-parity is violated.
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadro nic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $mathcal{O}(alpha^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_mu/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $mathcal{O}(alpha^2)$ and is due to hadronic vacuum polarization, whereas at $mathcal{O}(alpha^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_mu^text{SM}=116,591,810(43)times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$sigma$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics.
Composite Higgs models can be extended to the Planck scale by means of the partially unified partial compositeness (PUPC) framework. We present in detail the Techni-Pati-Salam model, based on a renormalizable gauge theory $SU(8)_{PS}times SU(2)_Ltime s SU(2)_R$. We demonstrate that masses and mixings for all generations of standard model fermions can be obtained via partial compositeness at low energy, with four-fermion operators mediated by either heavy gauge bosons or scalars. The strong dynamics is predicted to be that of a confining $Sp(4)_{rm HC}$ gauge group, with hyper-fermions in the fundamental and two-index anti-symmetric representations, with fixed multiplicities. This motivates for Lattice studies of the Infra-Red near-conformal walking phase, with results that may validate or rule out the model. This is the first complete and realistic attempt at providing an Ultra-Violet completion for composite Higgs models with top partial compositeness. In the baryon-number conserving vacuum, the theory also predicts a Dark Matter candidate, with mass in the few TeV range, protected by semi-integer baryon number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا