ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect control of reflection and refraction using spatially dispersive metasurfaces

147   0   0.0 ( 0 )
 نشر من قبل Viktar Asadchy
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-uniform metasurfaces (electrically thin composite layers) can be used for shaping refracted and reflected electromagnetic waves. However, known design approaches based on the generalized refraction and reflection laws do not allow realization of perfectly performing devices: there are always some parasitic reflections into undesired directions. In this paper we introduce and discuss a general approach to the synthesis of metasurfaces for full control of transmitted and reflected plane waves and show that perfect performance can be realized. The method is based on the use of an equivalent impedance matrix model which connects the tangential field components at the two sides on the metasurface. With this approach we are able to understand what physical properties of the metasurface are needed in order to perfectly realize the desired response. Furthermore, we determine the required polarizabilities of the metasurface unit cells and discuss suitable cell structures. It appears that only spatially dispersive metasurfaces allow realization of perfect refraction and reflection of incident plane waves into arbitrary directions. In particular, ideal refraction is possible only if the metasurface is bianisotropic (weak spatial dispersion), and ideal reflection without polarization transformation requires spatial dispersion with a specific, strongly non-local response to the fields.



قيم البحث

اقرأ أيضاً

In this talk we present and discuss a new general approach to the synthesis of metasurfaces for full control of transmitted and reflected fields. The method is based on the use of an equivalent impedance matrix which connects the tangential field com ponents at the two sides on the metasurface. Finding the impedance matrix components, we are able to synthesize metasurfaces which perfectly realize the desired response. We will explain possible alternative physical realizations and reveal the crucial role of bianisotropic coupling to achieve full control of transmission through perfectly matched metasurfaces. This abstract summarizes our results on metasurfaces for perfect refraction into an arbitrary direction.
There is today a growing need to accurately model the angular scattering response of metasurfaces for optical analog processing applications. However, the current metasurface modeling techniques are not well suited for such a task since they are limi ted to small angular spectrum transformations, as shall be demonstrated. The goal of this work is to overcome this limitation by improving the modeling accuracy of these techniques and, specifically, to provide a better description of the angular response of metasurfaces. This is achieved by extending the current methods, which are restricted to dipolar responses and weak spatially dispersive effects, so as to include quadrupolar responses and higher-order spatially dispersive components. The accuracy of the newly derived multipolar model is demonstrated by predicting the angular scattering of a dielectric metasurface. This results in a modeling accuracy that is at least two times better than the standard dipolar model.
69 - Rasoul Alaee , Yaswant Vaddi , 2020
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect abs orption is achieved by controlling the relative phases of the input beams. We show that the optical response of the nonlinear metasurface can be tuned from a complete to a partial absorption by changing the intensity of the pump beam. The proposed nonlinear metasurface can be used to design optically tunable thermal emitters, modulators, and sensors.
In this paper, theoretical and numerical studies of perfect/nearly-perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.
In passive linear systems, complete combining of powers carried by waves from several input channels into a single output channel is forbidden by the energy conservation law. Here, we demonstrate that complete combination of both coherent and incoher ent plane waves can be achieved using metasurfaces with properties varying in space and time. The proposed structure reflects waves of the same frequency but incident at different angles towards a single direction. The frequencies of the output waves are shifted by the metasurface, ensuring perfect incoherent power combining. The proposed concept of power combining is general and can be applied for electromagnetic waves from the microwave to optical domains, as well as for waves of other physical nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا