ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing Kalman Filters and Observers for Power System Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

446   0   0.0 ( 0 )
 نشر من قبل Junjian Qi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.



قيم البحث

اقرأ أيضاً

This paper proposes a fully distributed robust state-estimation (D-RBSE) method that is applicable to multi-area power systems with nonlinear measurements. We extend the recently introduced bilinear formulation of state estimation problems to a robus t model. A distributed bilinear state-estimation procedure is developed. In both linear stages, the state estimation problem in each area is solved locally, with minimal data exchange with its neighbors. The intermediate nonlinear transformation can be performed by all areas in parallel without any need of inter-regional communication. This algorithm does not require a central coordinator and can compress bad measurements by introducing a robust state estimation model. Numerical tests on IEEE 14-bus and 118-bus benchmark systems demonstrate the validity of the method.
Understanding smart grid cyber attacks is key for developing appropriate protection and recovery measures. Advanced attacks pursue maximized impact at minimized costs and detectability. This paper conducts risk analysis of combined data integrity and availability attacks against the power system state estimation. We compare the combined attacks with pure integrity attacks - false data injection (FDI) attacks. A security index for vulnerability assessment to these two kinds of attacks is proposed and formulated as a mixed integer linear programming problem. We show that such combined attacks can succeed with fewer resources than FDI attacks. The combined attacks with limited knowledge of the system model also expose advantages in keeping stealth against the bad data detection. Finally, the risk of combined attacks to reliable system operation is evaluated using the results from vulnerability assessment and attack impact analysis. The findings in this paper are validated and supported by a detailed case study.
We consider a class of malicious attacks against remote state estimation. A sensor with limited resources adopts an acknowledgement (ACK)-based online power schedule to improve the remote state estimation performance. A malicious attacker can modify the ACKs from the remote estimator and convey fake information to the sensor. When the capability of the attacker is limited, we propose an attack strategy for the attacker and analyze the corresponding effect on the estimation performance. The possible responses of the sensor are studied and a condition for the sensor to discard ACKs and switch from online schedule to offline schedule is provided.
134 - Lubin Chang 2015
This note reveals an explicit relationship between two representative finite impulse response (FIR) filters, i.e. the newly derived and popularized Kalman-Like unbiased FIR filter (UFIR) and the receding horizon Kalman FIR filter (RHKF). It is pointe d out that the only difference of the two algorithms lies in the noise statistics ignorance and appropriate initial condition construction strategy in UFIR. The revelation can benefit the performance improvement of one by drawing lessons from the other. Some interesting conclusions have also been drawn and discussed from this revelation.
An unobservable false data injection (FDI) attack on AC state estimation (SE) is introduced and its consequences on the physical system are studied. With a focus on understanding the physical consequences of FDI attacks, a bi-level optimization probl em is introduced whose objective is to maximize the physical line flows subsequent to an FDI attack on DC SE. The maximization is subject to constraints on both attacker resources (size of attack) and attack detection (limiting load shifts) as well as those required by DC optimal power flow (OPF) following SE. The resulting attacks are tested on a more realistic non-linear system model using AC state estimation and ACOPF, and it is shown that, with an appropriately chosen sub-network, the attacker can overload transmission lines with moderate shifts of load.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا