ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced circular photogalvanic effect in HgTe quantum wells in the heavily inverted regime

72   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to the strong spin-orbit interaction (SOI), HgTe-based quantum wells (QWs) exhibit very rich spin-related properties. But the full descriptions of them are beyond the simple parabolic band models and conventional Rashba and Dresselhaus SOI terms, as a result of the strong interband coupling of the narrow gap band structures. Here, we develop a theoretical method to calculate the circular photogalvanic effect (CPGE) in Hg$_{0.3}$Cd$_{0.7}$Te/HgTe/Hg$_{0.3}$Cd$_{0.7}$Te quantum wells (HgTe QWs) based on the realistic eight-band $mathbf{k}cdotmathbf{p}$ model with density matrix formalism. Our method could take account of the unusual band structures and SOIs of HgTe QWs, therefore can be used to calculate the CPGE currents in HgTe QWs with non-parabolic, Dirac-like and inverted energy dispersions. The microscopic origin of CPGE and the interplay effect of structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA) is also investigated. In addition, this method is extended to study the pure spin currents (PSCs) in HgTe QWs injected by linearly polarized light at normal incidence. Our calculation results support the following findings: (i) In the inverted phase regime, the energy dispersion of heavily inverted HgTe QWs could be strongly distorted, lead to a significant enhancement of CPGE at a certain range of energy spectrum. (ii) The interplay of SIA and BIA could lead to the CPGE currents anisotropically dependent on the azimuth angle of oblique incident light. (iii) The PSC $j_{y}^{x}$ ($xparallel[110]$ and $yparallel[bar{1}10]$) produced by [110]-linearly-polarized light could change sign with HgTe QW transformed from normal phase to inverted phase. These findings might be utilized in developing the HgTe-based infrared/terahertz optoelectronic and spintronic devices.

قيم البحث

اقرأ أيضاً

104 - B. Wittmann , R. Ravash , H. Diehl 2007
We report on the observation of the terahertz radiation induced circular (CPGE) and linear (LPGE) photogalvanic effects in HgTe quantum wells. The current response is well described by the phenomenological theory of CPGE and LPGE.
We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be understood from a phenomenological theory. The observed dependences of the photocurrent on the radiation wavelength and temperature are discussed.
We report on the observation of photogalvanic effects induced by terahertz radiation in type-II GaSb/InAs quantum wells with inverted band order. Photocurrents are excited at oblique incidence of radiation and consists of several contributions varyin g differently with the change of the radiation polarization state; the one driven by the helicity and the other one driven by the linearly polarization of radiation are of comparable magnitudes. Experimental and theoretical analyses reveal that the photocurrent is dominated by the circular and linear photogalvanic effects in a system with a dominant structure inversion asymmetry. A microscopic theory developed in the framework of the Boltzmann equation of motion considers both photogalvanic effects and describes well all the experimental findings.
We investigate the current noise in HgTe-based quantum wells with an inverted band structure in the regime of disordered edge transport. Consistent with previous experiments, the edge resistance strongly exceeds $h/e^2$ and weakly depends on the temp erature. The shot noise is well below the Poissonian value and characterized by the Fano factor with gate voltage and sample to sample variations in the range $0.1<F<0.3$. Given the fact that our devices are shorter than the most pessimistic estimate of the ballistic dephasing length, these observations exclude the possibility of one-dimensional helical edge transport. Instead, we suggest that a disordered multi-mode conduction is responsible for the edge transport in our experiment.
Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type co nductance: A very small magnetic field of approximately 70 mT is sufficient to induce a transition into the nu = -1 quantum Hall state, which extends up to at least 10 Tesla. The onset field value remains constant for a unexpectedly wide gate-voltage range. Based on temperature and angle-dependent magnetic field measurements we show that the unusual behavior results from the realization of the quantum anomalous Hall state in these magnetically doped QWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا