ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling microscopy of superconducting topological surface states in Bi$_2$Se$_3$

110   0   0.0 ( 0 )
 نشر من قبل Nicholas Sedlmayr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present scanning tunneling microscopy of a large $textrm{Bi}_2textrm{Se}_3$ crystal with superconducting PbBi islands deposited on the surface. Local density of states measurements are consistent with induced superconductivity in the topological surface state with a coherence length of order 540 nm. At energies above the gap the density of states exhibits oscillations due to scattering caused by a nonuniform order parameter. Strikingly, the spectra taken on islands also display similar oscillations along with traces of the Dirac cone, suggesting an inverse topological proximity effect.

قيم البحث

اقرأ أيضاً

109 - Can-Li Song , Lili Wang , Ke He 2015
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi$_2$Se$_3$ ultrathin films. At two-dimensional limit, bulk electrons becomes quantized and the quan tization can be controlled by film thickness at single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of phase relaxation length $l_{phi}$ and inelastic scattering lifetime $tau$ of topological surface-state electrons. We find that $tau$ exhibits a remarkable $(E-E_F)^{-2}$ energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.
We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify t he effects of inversion-symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the ${+2}$-valence state and introduces an acceptor in the bulk band gap. The Mn-acceptor has predominantly $p$-character, and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn $d$-levels and the $p$-levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasi-resonant coupling and the strong real-space overlap between the spin-chiral surface states and the mid-gap spin-polarized Mn-acceptor states.
Fourier transformation of atomically resolved STM topography of $(LaSe)_{1.14}(NbSe_2)$ revealed a surface modulation along the hexagonal surface lattice of $NbSe_2$ layer, but with a two times larger period. We compare it to the modified charge density wave found on plain $NbSe_2$ under strain.
Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconduc tivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi$_2$Se$_3$ films on a d-wave superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi$_2$Se$_3$ films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a conden sed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference and emerging Landau levels at high magnetic field in Dirac semimetals Cd$_3$As$_2$ and Na$_3$Bi, we observed extended Dirac-like bulk electronic bands. Quasiparticle interference imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا