ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters II: NGC 5024, NGC 5272, and NGC 6352

382   0   0.0 ( 0 )
 نشر من قبل Rachel Wagner-Kaiser
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from $sim$0.05 to 0.11 for these three clusters. Model grids with solar $alpha$-element abundances ([$alpha$/Fe] =0.0) and enhanced $alpha$-elements ([$alpha$/Fe]=0.4) are adopted.



قيم البحث

اقرأ أيضاً

115 - A. Bellini 2013
NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters which share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use HSTs WFPC2, A CS, and WFC3 images and present a broad multicolor study of their stellar content, covering all main evolutionary branches. The color-magnitude diagrams (CMDs) give compelling evidence that both clusters host at least two stellar populations, which manifest themselves in different ways. NGC 6388 has a broadened main sequence (MS), a split sub-giant branch (SGB), and a split red giant branch (RGB) that becomes evident above the HB in our data set; its red HB is also split into two branches. NGC 6441 has a split MS, but only an indication of two SGB populations, while the RGB clearly splits in two from the SGB level upward, and no red HB structure. The multicolor analysis of the CMDs confirms that the He difference between the two main stellar populations in the two clusters must be similar. This is observationally supported by the HB morphology, but also confirmed by the color distribution of the stars in the MS optical band CMDs. However, a MS split becomes evident in NGC 6441 using UV colors, but not in NGC 6388, indicating that the chemical patterns of the different populations are different in the two clusters, with C, N, O abundance differences likely playing a major role. We also analyze the radial distribution of the two populations.
We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously s ample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ~0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed globular cluster formation scenarios. Additionally, we leverage our Bayesian technique to shed light on inconsistencies between the theoretical models and the observed data.
We present the results of a commissioning campaign to observe Galactic globular clusters for the search of microlensing events. The central 10 X 10 region of the globular cluster NGC 5024 was monitored using the 2-m Himalayan Chandra Telescope in R-b and for a period of about 8 hours on 24 March 2010. Light curves were obtained for nearly 10,000 stars, using a modified Difference Image Analysis (DIA) technique. We identified all known variables within our field of view and revised periods and status of some previously reported short-period variables. We report about eighty new variable sources and present their equatorial coordinates, periods, light curves and possible types. Out of these, 16 are SX Phe stars, 10 are W UMa-type stars, 14 are probable RR Lyrae stars and 2 are detached eclipsing binaries. Nine of the newly discovered SX Phe stars and two eclipsing binaries belong to the Blue Straggler Star (BSS) population.
We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations (vanDyk et al. 2009, Stein et al. 2013). Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties---age, metallicity, helium abundance, distance, absorption, and initial mass---are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).
Recently, Kundu et al (2019) reported that the globular cluster NGC 5024 (M53) possesses five extra-tidal RR Lyrae. In fact, four of them were instead known members of a nearby globular cluster NGC 5053. The status of the remaining extra-tidal RR Lyr ae is controversial depending on the adopted tidal radius of NGC 5024. We have also searched for additional extra-tidal RR Lyrae within an area of $sim8$~deg$^2$ covering both globular clusters. This includes other known RR Lyrae within the search area, as well as stars that fall within the expected range of magnitudes and colors for RR Lyrae (and yet outside the cutoff of 2/3 of the tidal radii of each globular clusters for something to be called extra-tidal) if they were extra-tidal RR Lyrae candidates for NGC 5024 or NGC 5053. Based on the the proper motion information and their locations on the color-magnitude diagram, none of the known RR Lyrae belong to the extra-tidal RR Lyrae of either globular clusters. In the cases where the stars satisfied the magnitude and color ranges of RR Lyrae, analysis of time series data taken from the Zwicky Transient Facility do not reveal periodicities, suggesting that none of these stars are RR Lyrae. We conclude that there are no extra-tidal RR Lyrae associated with either NGC 5024 or NGC 5053 located within our search area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا