ﻻ يوجد ملخص باللغة العربية
Certain superposition states of the 1-D infinite square well have transient zeros at locations other than the nodes of the eigenstates that comprise them. It is shown that if an infinite potential barrier is suddenly raised at some or all of these zeros, the well can be split into multiple adjacent infinite square wells without affecting the wavefunction. This effects a change of the energy eigenbasis of the state to a basis that does not commute with the original, and a subsequent measurement of the energy now reveals a completely different spectrum, which we call the {interference energy spectrum} of the state. This name is appropriate because the same splitting procedure applied at the stationary nodes of any eigenstate does not change the measurable energy of the state. Of particular interest, this procedure can result in measurable energies that are greater than the energy of the highest mode in the original superposition, raising questions about the conservation of energy akin to those that have been raised in the study of superoscillations. An analytic derivation is given for the interference spectrum of a given wavefunction $Psi(x,t)$ with $N$ known zeros located at points $s_i = (x_i, t_i)$. Numerical simulations were used to verify that a barrier can be rapidly raised at a zero of the wavefunction without significantly affecting it. The interpretation of this result with respect to the conservation of energy and the energy-time uncertainty relation is discussed, and the idea of alternate energy eigenbases is fleshed out. The question of whether or not a preferred discrete energy spectrum is an inherent feature of a particles quantum state is examined.
We introduce a numerical method to obtain approximate eigenvalues for some problems of Sturm-Liouville type. As an application, we consider an infinite square well in one dimension in which the mass is a function of the position. Two situations are s
We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator $-d^2/dx^2$ on $L^2[-a,a]$, $a>0$, that is, the one dimensional infinite square well. First of all, we classify these
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this pote
A Gedanken experiment is described to explore a counter-intuitive property of quantum mechanics. A particle is placed in a one-dimensional infinite well. The barrier on one side of the well is suddenly removed and the chamber dramatically enlarged. A
In this paper we investigate the completeness of the Stark resonant eigenstates for a particle in a square-well potential. We find that the resonant state expansions for target functions converge inside the potential well and that the existence of th