ترغب بنشر مسار تعليمي؟ اضغط هنا

Review of strongly-coupled composite dark matter models and lattice simulations

168   0   0.0 ( 0 )
 نشر من قبل Ethan Neil
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.



قيم البحث

اقرأ أيضاً

Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice cal culations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.
We consider a composite model where both the Higgs and a complex scalar $chi$, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetr y structure is $SO(7)/SO(6)$, and the DM is charged under an exact $U(1)_{rm DM} subset SO(6)$ that ensures its stability. Depending on whether the $chi$ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the $U(1)_{rm DM}$, whose LHC phenomenology is analyzed. We identify a region of parameters with $f = 1.4; mathrm{TeV}$ and $200;mathrm{GeV} lesssim m_chi lesssim 400;mathrm{GeV}$ that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme try that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.
A holographic model of chiral symmetry breaking is used to study the dynamics plus the meson and baryon spectrum of the underlying strong dynamics in composite Higgs models. The model is inspired by top-down D-brane constructions. We introduce this m odel by applying it to $N_f=2$ QCD. We compute meson masses, decay constants and the nucleon mass. The spectrum is improved by including higher dimensional operators to reflect the UV physics of QCD. Moving to composite Higgs models, we impose perturbative running for the anomalous dimension of the quark condensate in a variety of theories with varying number of colors and flavours. We compare our results in detail to lattice simulations for the following theories: $SU(2)$ gauge theory with two Dirac fundamentals; $Sp(4)$ gauge theory with fundamental and sextet matter; and $SU(4)$ gauge theory with fundamental and sextet quarks. In each case, the holographic results are encouraging since they are close to lattice results for masses and decay constants. Moreover, our models allow us to compute additional observables not yet computed on the lattice, to relax the quenched approximation and move to the precise fermion content of more realistic composite Higgs models not possible on the lattice. We also provide a new holographic description of the top partners including their masses and structure functions. With the addition of higher dimension operators, we show the top Yukawa coupling can be made of order one, to generate the observed top mass. Finally, we predict the spectrum for the full set of models with top partners proposed by Ferretti and Karateev.
We calculate for the first time the scattering cross section between lightest glueballs in $SU(2)$ pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL Q CD method, with several lattice spacings ($beta = 2.1, 2.2, 2.3, 2.4$, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the $SU(2)$ Yang-Mills theory, as $Lambda > 60$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا