ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedded star formation in the extended narrow line region of Centaurus A: extreme mixing observed by MUSE

118   0   0.0 ( 0 )
 نشر من قبل Francesco Santoro
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H II regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (H_alpha/H_beta~6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H II regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

قيم البحث

اقرأ أيضاً

200 - Enrico Congiu 2017
We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the diff erent regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.
We present deep long slit spectra of Mkn79 in position angles PA=12$^{o}$ and PA=50$^{o}$ obtained with the WHT. These data prove the existence of an extended narrow line region in PA=12$^{o}$, which coincides with the triplet radio structure (Ulvest ad & Wilson 1984) and the observed outflow of material from the nucleus at PA=10$^{o}$ (Whittle et al. 1988). The ratios of the high to low ionization lines indicate a higher level of gas excitation in PA=12$^{o}$ compared to PA=50$^{o}$. The [NII]$lambda$6583/H$alpha$ and [SII]$lambda$6717,31/H$alpha$ versus [OIII]$lambda$5007/H$beta$ line ratios are consistent with excitation by an AGN continuum rather than a HII region.
We present the first full FIR spectrum of Centaurus A (NGC 5128) from 43 - 196.7 um. The data was obtained with the ISO Long Wavelength Spectrometer (LWS). We conclude that the FIR emission in a 70 arcsec beam centred on the nucleus is dominated by s tar formation rather than AGN activity. The flux in the far-infrared lines is ~ 1 % of the total FIR: the [CII] line flux is ~ 0.4 % FIR and the [OI] line is ~ 0.2 %, with the remainder arising from [OIII], [NII] and [NIII] lines. These are typical values for starburst galaxies. The ratio of the [NIII]/[NII] line intensities from the HII regions in the dust lane can be modelled as a ~ 6 million year old starburst. This suggests that the galaxy underwent either a recent merger or a merger which triggered a series of bursts. We estimate that < 5 % of the observed [CII] arises in the cold neutral medium (CNM) and that ~ 10 % arises in the warm ionized medium (WIM). The main contributors to the [CII] emission are the PDRs, which are located throughout the dust lane and in regions beyond where the bulk of the molecular material lies. On scales of ~ 1 kpc the average physical properties of the PDRs are modelled with a gas density, n ~ 1000 cm^-3, an incident far-UV field, G ~ 100 times the local Galactic field, and a gas temperature of ~ 250 K.
122 - E. Congiu 2017
We studied the properties of the gas of the extended narrow line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high resolution spectra to investigate how the main properties of this region depend on the gas velocity. We d ivided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and SUMA composite models (photo-ionization + shocks), show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photo-ionization from the active nucleus remains the main ionization mechanism. In IC 5063 the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disk. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the ISM and high velocity components, such as jets.
We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [ NII] and [OI] lines are broader than the [SII] line and that the [NII]/[SII] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of about 3 pc and with a gas density of about 10$^4$-10$^5$ cm$^{-3}$, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher density component of the ILR is only present in Seyferts, while it is truncated at larger radii because of the presence of the circumnuclear torus. The ILR is only visible in its entirety in LINERs because the obscuring torus is not present in these sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا