ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast spin density wave transition in Chromium governed by thermalized electron gas

247   0   0.0 ( 0 )
 نشر من قبل Chris Nicholson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter $Delta$ through the ultrafast phase transition. $Delta$ is defined by the transient temperature of the thermalized electron gas. The complete destruction of SDW order on a sub-100~fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly non-adiabatic regime of ultrafast photo-excitation.

قيم البحث

اقرأ أيضاً

We report on the study of a magnetic dislocation in pure chromium. Coherent x-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.
We report here on time-resolved x-ray diffraction measurements following femtosecond laser excitation in pure bulk chromium. Comparing the evolution of incommensurate charge-density-wave (CDW) and atomic lattice reflections, we show that, few nanosec onds after laser excitation, the CDW undergoes different structural changes than the atomic lattice. We give evidence for a transient CDW shear strain that breaks the lattice point symmetry. This strain is characteristic of sliding CDWs, as observed in other incommensurate CDW systems, suggesting the laser-induced CDW sliding capability in 3D systems. This first evidence opens perspectives for unconventional laser-assisted transport of correlated charges.
We theoretically investigate spin dynamics and $L_3$-edge resonant inelastic X-ray scattering (RIXS) of Chromium with commensurate spin-density wave (SDW) order, based on a multi-band Hubbard model composed of 3$d$ and 4$s$ orbitals. Obtaining the gr ound state with the SDW mean-field approximation, we calculate the dynamical transverse and longitudinal spin susceptibility by using random-phase approximation. We find that a collective spin-wave excitation seen in inelastic neutron scattering hardly damps up to $sim$0.6 eV. Above the energy, the excitation overlaps individual particle-hole excitations as expected, leading to broad spectral weight. On the other hand, the collective spin-wave excitation in RIXS spectra has a tendency to be masked by large spectral weight coming from particle-hole excitations with various orbital channels. This is in contrast with inelastic neutron scattering, where only selected diagonal orbital channels contribute to the spectral weight. However, it may be possible to detect the spin-wave excitation in RIXS experiments in the future if resolution is high enough.
The magnetic structure for the newly discovered iron-arsenide compound CaFeAs has been studied by neutron powder diffraction. Long-range magnetic order is detected below 85K, with an incommensurate modulation described by the propagation vector k=(0, $delta$,0), $deltasim$ 0.39. Below $sim$ 25K, our measurements detect a first-order phase transition where $delta$ locks into the commensurate value 3/8. A model of the magnetic structure is proposed for both temperature regimes, based on Rietveld refinements of the powder data and symmetry considerations. The structures correspond to longitudinal spin-density-waves with magnetic moments directed along the textit{b}-axis. A Landau analysis captures the change in thermodynamic quantities observed at the two magnetic transitions, in particular the drop in resistivity at the lock-in transition.
The dynamics of the photoinduced commensurate to incommensurate charge density wave (CDW) phase transition in 4Hb-TaSe2 are investigated by femtosecond electron diffraction. In the perturbative regime the CDW reforms on a 150 ps timescale, which is t wo orders of magnitude slower than in other transition-metal dichalcogenides. We attribute this to a weak coupling between the CDW carrying T-layers and thus demonstrate the importance of three-dimensionality for the existence of CDWs. With increasing optical excitation the phase transition is achieved showing a second order character in contrast to the first order behavior in thermal equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا