ترغب بنشر مسار تعليمي؟ اضغط هنا

Disciplined Convex-Concave Programming

83   0   0.0 ( 0 )
 نشر من قبل Xinyue Shen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce disciplined convex-concave programming (DCCP), which combines the ideas of disciplined convex programming (DCP) with convex-concave programming (CCP). Convex-concave programming is an organized heuristic for solving nonconvex problems that involve objective and constraint functions that are a sum of a convex and a concave term. DCP is a structured way to define convex optimization problems, based on a family of basic convex and concave functions and a few rules for combining them. Problems expressed using DCP can be automatically converted to standard form and solved by a generic solver; widely used implementations include YALMIP, CVX, CVXPY, and Convex.jl. In this paper we propose a framework that combines the two ideas, and includes two improvements over previously published work on convex-concave programming, specifically the handling of domains of the functions, and the issue of nondifferentiability on the boundary of the domains. We describe a Python implementation called DCCP, which extends CVXPY, and give examples.

قيم البحث

اقرأ أيضاً

A multi-convex optimization problem is one in which the variables can be partitioned into sets over which the problem is convex when the other variables are fixed. Multi-convex problems are generally solved approximately using variations on alternati ng or cyclic minimization. Multi-convex problems arise in many applications, such as nonnegative matrix factorization, generalized low rank models, and structured control synthesis, to name just a few. In most applications to date the multi-convexity is simple to verify by hand. In this paper we study the automatic detection and verification of multi-convexity using the ideas of disciplined convex programming. We describe an implementation of our proposed method that detects and verifies multi-convexity, and then invokes one of the general solution methods.
We present a composition rule involving quasiconvex functions that generalizes the classical composition rule for convex functions. This rule complements well-known rules for the curvature of quasiconvex functions under increasing functions and point wise maximums. We refer to the class of optimization problems generated by these rules, along with a base set of quasiconvex and quasiconcave functions, as disciplined quasiconvex programs. Disciplined quasiconvex programming generalizes disciplined convex programming, the class of optimization problems targeted by most modern domain-specific languages for convex optimization. We describe an implementation of disciplined quasiconvex programming that makes it possible to specify and solve quasiconvex programs in CVXPY 1.0.
We introduce log-log convex programs, which are optimization problems with positive variables that become convex when the variables, objective functions, and constraint functions are replaced with their logs, which we refer to as a log-log transforma tion. This class of problems generalizes traditional geometric programming and generalized geometric programming, and it includes interesting problems involving nonnegative matrices. We give examples of log-log convex functions, some well-known and some less so, and we develop an analog of disciplined convex programming, which we call disciplined geometric programming. Disciplined geometric programming is a subclass of log-log convex programming generated by a composition rule and a set of functions with known curvature under the log-log transformation. Finally, we describe an implementation of disciplined geometric programming as a reduction in CVXPY 1.0.
Convexification based on convex envelopes is ubiquitous in the non-linear optimization literature. Thanks to considerable efforts of the optimization community for decades, we are able to compute the convex envelopes of a considerable number of funct ions that appear in practice, and thus obtain tight and tractable approximations to challenging problems. We contribute to this line of work by considering a family of functions that, to the best of our knowledge, has not been considered before in the literature. We call this family ray-concave functions. We show sufficient conditions that allow us to easily compute closed-form expressions for the convex envelope of ray-concave functions over arbitrary polytopes. With these tools, we are able to provide new perspectives to previously known convex envelopes and derive a previously unknown convex envelope for a function that arises in probability contexts.
We present a convex-concave reformulation of the reversible Markov chain estimation problem and outline an efficient numerical scheme for the solution of the resulting problem based on a primal-dual interior point method for monotone variational ineq ualities. Extensions to situations in which information about the stationary vector is available can also be solved via the convex- concave reformulation. The method can be generalized and applied to the discrete transition matrix reweighting analysis method to perform inference from independent chains with specified couplings between the stationary probabilities. The proposed approach offers a significant speed-up compared to a fixed-point iteration for a number of relevant applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا