ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement negativity in a two dimensional harmonic lattice: Area law and corner contributions

118   0   0.0 ( 0 )
 نشر من قبل Andrea Coser
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the logarithmic negativity and the moments of the partial transpose in the ground state of a two dimensional massless harmonic square lattice with nearest neighbour interactions for various configurations of adjacent domains. At leading order for large domains, the logarithmic negativity and the logarithm of the ratio between the generic moment of the partial transpose and the moment of the reduced density matrix at the same order satisfy an area law in terms of the length of the curve shared by the adjacent regions. We give numerical evidences that the coefficient of the area law term in these quantities is related to the coefficient of the area law term in the Renyi entropies. Whenever the curve shared by the adjacent domains contains vertices, a subleading logarithmic term occurs in these quantities and the numerical values of the corner function for some pairs of angles are obtained. In the special case of vertices corresponding to explementary angles, we provide numerical evidence that the corner function of the logarithmic negativity is given by the corner function of the Renyi entropy of order 1/2.



قيم البحث

اقرأ أيضاً

We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in te rms of the Riemann theta function. We show that the moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities imply the non trivial result that also the negativity of the free fermion and the self-dual boson are equal.
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th e negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.
We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massl ess regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.
At the core of every frustrated system, one can identify the existence of frustrated rings that are usually interpreted in terms of single--particle physics. We check this point of view through a careful analysis of the entanglement entropy of both m odels that admit an exact single--particle decomposition of their Hilbert space due to integrability and those for which the latter is supposed to hold only as a low energy approximation. In particular, we study generic spin chains made by an odd number of sites with short-range antiferromagnetic interactions and periodic boundary conditions, thus characterized by a weak, i.e. nonextensive, frustration. While for distances of the order of the correlation length the phenomenology of these chains is similar to that of the non-frustrated cases, we find that correlation functions involving a number of sites scaling like the system size follow different rules. We quantify the long-range correlations through the von Neumann entanglement entropy, finding that indeed it violates the area law, while not diverging with the system size. This behavior is well fitted by a universal law that we derive from the conjectured single--particle picture.
113 - Andrej Gendiar 2020
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied by a tensor product variational formulation that we have generalized for this purpose. First, we identify the quantum phase transition for each hyperb olic lattice by calculating the magnetization. We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems located at the center with the rest of the lattice. We confirm that the entanglement entropy satisfies the area law at the phase transition for fixed coordination number, i.e., it scales linearly with the increasing size of the subsystems. On the other hand, the entanglement entropy decreases as power-law with respect to the increasing coordination number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا