ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of light yield by injection of the optical filler into the co extruded hole of plastic scintillation bar with WLS fiber in it

85   0   0.0 ( 0 )
 نشر من قبل Davit Chokheli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of the measurements with cosmic muons for the light yield of 2-meter long extruded scintillation bar (strip) as a function of distance for different options for light collection technique are presented. Scintillation strip cross section geometry was a triangle made on polystyrene plastic scintillator with dopants of 2% PTP and 0.03% POPOP, extruded with 2.6 mm diameter hole and produced at ISMA (Kharkov, Ukraine). It was shown that the insertion of the optical transparent resin (BC 600 or CKTN MED(E)) by special technique into the co-extruded hole with 1.0 mm or 1.2 mm wave-length shifter (WLS) fiber Kuraray Y11 (200) MC in it significantly improves light collection by factor of 1.6...1.9 against of the dry case.

قيم البحث

اقرأ أيضاً

The light collection of the extruded scintillator strip samples with WLS fibers placed in the longitudinal hole in the plates was measured. The holes were filled with various liquid fillers. Measurements were carried out under irradiation by cosmic m uons. The method of pumping liquid filler with viscosity more than 10 Pa*s in the strip hole with WLS fiber inside was designed and successfully tested.
We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO c rystals and APDs operated at a temperature of approximately 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies.
Detectors based on polystyrene scintillator strips with WLS fiber readout are widely used to register charged particles in many high-energy physics experiments. The fibers are placed into grooves or holes along the strip. The detection efficiency of these devices can be significantly increased by improving the optical contact between the scintillator and the fiber by adding an optical filler into the groove/hole. This work is devoted to the study of the light yield of a 5-m-long scintillator strip with a 1.2-mm-diameter Kuraray Y11(200)~MC WLS fiber inserted into the strips co-extruded hole filled with synthetic silicon resin SKTN-MED(E). The light yield was studied using cosmic muons and a $^{60}$Co radioactive source. Radiation hardness study of viscous fillers and short strip samples were performed on the IBR-2 pulsed research reactor of fast neutrons at JINR.
100 - Ettore Segreto 2011
A simple model for the estimation of the light yield of a scintillation detector is developed under general assumptions and relying exclusively on the knowledge of its optical properties. The model allows to easily incorporate effects related to Rayl eigh scattering and absorption of the photons.The predictions of the model are benchmarked with the outcomes of Monte Carlo simulations of specific scintillation detectors. An accuracy at the level of few percent is achieved. The case of a real liquid argon based detector is explicitly treated and the predicted light yield is compared with the measured value.
Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as t he detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators---EJ-200, EJ-204, and EJ-208---was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا