ﻻ يوجد ملخص باللغة العربية
We demonstrate the first experimental observation of coherent population oscillation, an optical analogue of electromagnetically induced transparency, in graphene based on phase sensitive pump-probe system. Degenerate four-wave-mixing between pump and probe modifies the dispersion and absorption of the population oscillation process in graphene, and leads to enhance and depression of modulation instability with asymmetry in frequency. The analytically predicted asymmetrical burning hole fully consists with the experiments.
A novel mechanism to realize dynamically tunable electromagnetically induced transparency (EIT) analogue in the terahertz (THz) regime is proposed. By putting the electrically controllable monolayer graphene under the dark resonator, the amplitude of
The gain-assisted plasmonic analogue of electromagnetically induced transparency (EIT) in a metallic metamaterial is investigated for the purpose to enhance the sensing performance of the EIT-like plasmonic structure. The structure is composed of thr
Recently, phase-change materials (PCMs) have drawn more attention due to the dynamically tunable optical properties. Here, we investigate the active control of electromagnetically induced transparency (EIT) analogue based on terahertz (THz) metamater
We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally different from the passive one by using o
Metamaterials are engineered materials composed of small electrical circuits producing novel interactions with electromagnetic waves. Recently, a new class of metamaterials has been created to mimic the behavior of media displaying electromagneticall