ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of electronic correlations on the metal-insulator transition of $alpha$-(BEDT-TTF)$_2$I$_3$: theoretical and experimental investigations of its optical properties

93   0   0.0 ( 0 )
 نشر من قبل Martin Dressel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The organic salt $alpha$-(BEDT-TTF)$_2$I$_3$ is considered a model system for metal-insulator transition due to electronic charge ordering at $T_{rm CO}=135$~K. The optical properties obtained from polarized reflection measurements above and below $T_{rm CO}$ can be well described by calculations based on first-principle density-functional theory (DFT). We discuss the effect of electronic correlations on the metal-insulator transition.



قيم البحث

اقرأ أيضاً

Infrared optical investigations of $alpha$-(BEDT-TTF)$_2$I$_3$ have been performed in the spectral range from 80 to 8000~cm$^{-1}$ down to temperatures as low as 10~K by applying hydrostatic pressure. In the metallic state, $T > 135$~K, we observe a 50% increase in the Drude contribution as well as the mid-infrared band due to the growing intermolecular orbital overlap with pressure up to 11~kbar. In the ordered state, $T<T_{rm CO}$, we extract how the electronic charge per molecule varies with temperature and pressure: Transport and optical studies demonstrate that charge order and metal-insulator transition coincide and consistently yield a linear decrease of the transition temperature $T_{rm CO}$ by $8-9$~K/kbar. The charge disproportionation $Deltarho$ diminishes by $0.017~e$/kbar and the optical gap $Delta$ between the bands decreases with pressure by -47~cm$^{-1}$/kbar. In our high-pressure and low-temperature experiments, we do observe contributions from the massive charge carriers as well as from massless Dirac electrons to the low-frequency optical conductivity, however, without being able to disentangle them unambiguously.
173 - Benjamin Commeau 2017
(BEDT-TFF)$_2$I$_3$ charge transfer salts are reported to show superconductivity and pressure induced quasi two-dimensional Dirac cones at the Fermi level. By performing state of the art ab initio calculations in the framework of density functional t heory, we investigate the structural and electronic properties of the three structural phases $alpha$, $beta$ and $kappa$. edit{We furthermore report about the irreducible representations of the corresponding electronic band structures, symmetry of their crystal structure, and discuss the origin of band crossings. Additionally, we discuss the chemically induced strain in $kappa$-(BEDT-TTF)$_2$I$_3$ achieved by replacing the Iodine layer with other Halogens: Fluorine, Bromine and Chlorine. In the case of $kappa$-(BEDT-TTF)$_2$F$_3$, we identify topologically protected crossings within the band structure. These crossings are forced to occur due to the non-symmorphic nature of the crystal.} The calculated electronic structures presented here are added to the organic materials database (OMDB).
$alpha$-(BEDT-TTF)$_2$I$_3$ is a prominent example of charge ordering among organic conductors. In this work we explore the details of transport within the charge-ordered as well as semimetallic phase at ambient pressure. In the high-temperature semi metallic phase, the mobilities and concentrations of both electrons and holes conspire in such a way to create an almost temperature-independent conductivity as well as a low Hall effect. We explain these phenomena as a consequence of a predominantly inter-pocket scattering which equalizes mobilities of the two types of charge carriers. At low temperatures, within the insulating charge-ordered phase two channels of conduction can be discerned: a temperature-dependent activation which follows the mean-field behavior, and a nearest-neighbor hopping contribution. Together with negative magnetoresistance, the latter relies on the presence of disorder. The charge-ordered phase also features a prominent dielectric peak which bears a similarity to relaxor ferroelectrics. Its dispersion is determined by free-electron screening and pushed by disorder well below the transition temperature. The source of this disorder can be found in the anion layers which randomly perturb BEDT-TTF molecules through hydrogen bonds.
The Mott insulator $kappa$-(BEDT-TTF)$_2$Ag$_2$(CN)$_3$ forms a highly-frustrated triangular lattice of $S=1/2$ dimers with a possible quantum-spin-liquid state. Our experimental and numerical studies reveal the emergence of a slight charge imbalance between crystallographically inequivalent sites, relaxor dielectric response and hopping dc transport. In a broader perspective we conclude that the universal properties of strongly-correlated charge-transfer salts with spin liquid state are an anion-supported valence band and cyanide-induced quasi-degenerate electronic configurations in the relaxed state. The generic low-energy excitations are caused by charged domain walls rather than by fluctuating electric dipoles. They give rise to glassy dynamics characteristic of dimerized Mott insulators, including the sibling compound $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$.
We investigate the effect of strong electronic correlation on the massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under pressure. In this organic salt, one can control the electronic correlation by changing pressure and access the quantum critical point between the massless Dirac fermion phase and the charge ordering phase. We theoretically study the electronic structure of this system by applying the slave-rotor theory and find that the Fermi velocity decreases without creating a mass gap upon approaching the quantum critical point from the massless Dirac fermion phase. We show that the pressure-dependence of the Fermi velocity is in good quantitative agreement with the results of the experiment where the Fermi velocity is determined by the analysis of the Shubnikov-de Haas oscillations in the doped samples. Our result implies that the massless Dirac fermion system exhibits a quantum phase transition without creating a mass gap even in the presence of strong electronic correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا