ﻻ يوجد ملخص باللغة العربية
Decades of experience have shown that there is no single one-size-fits-all solution that can be used to provision Internet globally and that invariably there are tradeoffs in the design of Internet. Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost efficient ways of provisioning high-performance global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible ideal networking (in which we have high throughput and quality of service as well as low latency and congestion), we should consider providing approximate networking through the adoption of context-appropriate tradeoffs. Approximate networking can be used to implement a pragmatic tiered global access to the Internet for all (GAIA) system in which different users the world over have different context-appropriate (but still contextually functional) Internet experience.
The engineering vision of relying on the ``smart sky for supporting air traffic and the ``Internet above the clouds for in-flight entertainment has become imperative for the future aircraft industry. Aeronautical ad hoc Networking (AANET) constitutes
The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but ha
Content replication to many destinations is a common use case in the Internet of Things (IoT). The deployment of IP multicast has proven inefficient, though, due to its lack of layer-2 support by common IoT radio technologies and its synchronous end-
Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the worl
Quality of Service (QoS) metrics deal with network quantities, e.g. latency and loss, whereas Quality of Experience (QoE) provides a proxy metric for end-user experience. Many papers in the literature have proposed mappings between various QoS metric