ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Continuum in the Spectral Function of the Resonant Fermi Polaron

81   0   0.0 ( 0 )
 نشر من قبل Olga Goulko
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present controlled numerical results for the ground state spectral function of the resonant Fermi polaron in three dimensions. We establish the existence of a dark continuum---a region of anomalously low spectral weight between the narrow polaron peak and the rest of the spectral continuum. The dark continuum develops when the s-wave scattering length is of the order of the inverse Fermi wavevector, $alesssim 1/k_{rm F}$, i.e. in the absence of a small interaction-related parameter when the spectral weight is not expected to feature a near-perfect gap structure after the polaron peak.

قيم البحث

اقرأ أيضاً

We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi o scillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is determined by many-body dephasing within the upper repulsive branch rather than by the metastability of the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas.
We consider the highly spin-imbalanced limit of a two-component Fermi gas, where there is a small density of $downarrow$ impurities attractively interacting with a sea of $uparrow$ fermions. In the single-impurity limit at zero temperature, there exi sts the so-called polaron-molecule transition, where the impurity sharply changes its character by binding a $uparrow$ fermion at sufficiently strong attraction. Using a recently developed variational approach, we calculate the thermodynamic properties of the impurity, and we show that the transition becomes a smooth crossover at finite temperature due to the thermal occupation of excited states in the impurity spectral function. However, remnants of the single-impurity transition are apparent in the momentum-resolved spectral function, which can in principle be probed with Raman spectroscopy. We furthermore show that the Tan contact exhibits a characteristic non-monotonic dependence on temperature that provides a signature of the zero-temperature polaron-molecule transition. For a finite impurity density, we argue that descriptions purely based on the behavior of the Fermi polaron are invalid near the polaron-molecule transition, since correlations between impurities cannot be ignored. In particular, we show that the spin-imbalanced system undergoes phase separation at low temperatures due to the strong attraction between $uparrowdownarrow$ molecules induced by the Fermi sea. Thus, we find that the impurity spectrum and the induced impurity-impurity interactions are key to understanding the phase diagram of the spin-imbalanced Fermi gas.
We study the ground state and excitations of a one-dimensional trapped polarized Fermi gas interacting with a single impurity. First, we study the tunnelling dynamics of the impurity through a potential barrier, such as one effectively created by a d ouble-well trap. To this end, we perform an exact diagonalization of the full few-body Hamiltonian and analyze the results in a Local Density Approximation. Off-diagonal and one-particle correlation matrices are studied and are shown to be useful for discerning between different symmetries of the states. Second, we consider a radio-frequency (RF) spectroscopy of our system and the resulting spectral function. These calculations can motivate future experiments, which can provide a further insight into the physics of a Fermi polaron.
Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting with a quantum reservoir. Here, we expa nd the experimental analysis by disentangling the effects of trap inhomogeneities and the many-body continuum in one of these experiments. This makes it possible to extract the energy of the polaron at a well-defined density as a function of the interaction strength. Comparisons with quantum Monte-Carlo as well as diagrammatic calculations show good agreement, and provide a more detailed picture of the polaron properties at stronger interactions than previously possible. Moreover, we develop a semi-classical theory for the motional dynamics and three-body loss of the polarons, which partly explains a previously unresolved discrepancy between theory and experimental observations for repulsive interactions. Finally, we utilize quantum Monte-Carlo calculations to demonstrate that the findings reported in the two experiments are consistent with each other.
Recently, the topics of many-body localization (MBL) and one-dimensional strongly interacting few-body systems have received a lot of interest. These two topics have been largely developed separately. However, the generality of the latter as far as e xternal potentials are concerned -- including random and quasirandom potentials -- and their shared spatial dimensionality, makes it an interesting way of dealing with MBL in the strongly interacting regime. Utilising tools developed for few-body systems we look to gain insight into the localization properties of the spin in a Fermi gas with strong interactions. We observe a delocalized--localized transition over a range of fillings of a quasirandom lattice. We find this transition to be of a different nature for low and high fillings, due to the diluteness of the system for low fillings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا