ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 16771: A lithium-rich giant in the red-clump stage

115   0   0.0 ( 0 )
 نشر من قبل Bala Sudhakara Reddy A
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the nature of Li enrichment in the atmosphere of HD 16771 by exploring various Li enhancement scenarios. Methods: We have collected high-resolution echelle spectra of HD 16771 and derived stellar parameters and chemical abundances for 27 elements by either line equivalent widths or synthetic spectrum analyses. Results: HD 16771 is a Li-rich (log(n(Li))=+2.67+/-0.10 dex) intermediate mass giant star (M=2.4+/-0.1 Msun) with age=0.76+/-0.13 Gyr and located at the red giant clump. Kinematics and chemical compositions are consistent with HD 16771 being a member of the Galactic thin disk population. The non-detection of 6Li(< 3%), a low carbon isotopic ratio (12C/13C=12+/-2), and the slow rotation (vsini=2.8 km/s) all suggest that lithium might have been synthesized in this star. On the contrary, HD 16771 with a mass of 2.4 Msun has no chance of encountering luminosity function bump and He-core flash where the possibility of fast deep-mixing for Li enrichment in K giants has been suggested previously. Conclusions: Based of the evolutionary status of this star, we discuss the possibility that 7Li synthesis in HD 16771 is triggered by the engulfment of close-in planet(s) during the RGB phase.

قيم البحث

اقرأ أيضاً

In this work, the helium-enhancement (He-enhancement) in the lithium-rich (Li-rich) K-giant HD 77361 is investigated using the strengths of the MgH band and the MgI lines. The detailed abundance analysis and also the synthesis of the MgH band and the Mg I lines has been carried out for HD 77361. One would expect, within uncertainties, same Mg abundance from both the MgH and Mg I lines. But, we found that Mg abundance derived from MgH lines is significantly less than the abundance from Mg I lines, and this difference cannot be reconciled by changing the stellar parameters within the uncertainties, implying He enhancement in stars photosphere. The He enhancement in the atmospheres is estimated by using models of different He/H ratios so that both the lines, MgH as well as Mg I, return the same Mg abundance for the adopted models He/H ratio. We found He/H=0.4+/-0.1 as the value for HD 77361, the normal value of He/H=0.1. Knowing the amount of He-enhancement in the Li-rich giants is a strong clue for understanding the scenarios responsible for the Li and He enrichment. The analysis and results are discussed.
Lithium has confused scientists for decades at almost each scale of the universe. Lithium-rich giants are peculiar stars with lithium abundances over model prediction. A large fraction of lithium-rich low-mass evolved stars are traditionally supposed to be red giant branch (RGB) stars. Recent studies, however, report that red clump (RC) stars are more frequent than RGB. Here, we present a uniquely large systematic study combining the direct asteroseismic analysis with the spectroscopy on the lithium-rich stars. The majority of lithium-rich stars are confirmed to be RCs, whereas RGBs are minor. We reveal that the distribution of lithium-rich RGBs steeply decline with the increasing lithium abundance, showing an upper limit around 2.6 dex, whereas the Li abundances of RCs extend to much higher values. We also find that the distributions of mass and nitrogen abundance are notably different between RC and RGB stars. These findings indicate that there is still unknown process that significantly affects surface chemical composition in low-mass stellar evolution.
In this letter we characterise IRAS12556-7731 as the first lithium-rich M-type giant. Based on its late spectral type and high lithium content, and because of its proximity in angular distance to the ChamaeleonII star-forming region, the star was mis classified as a young low-mass star in a previous work. Based on HARPS data, synthetic spectral modelling, and proper motions, we derive the astrophysical parameters and kinematics of the star and discuss its evolutionary status. This solar-mass red giant (Teff=3460+/-60K and log(g)=0.6+/-0.2) is characterised by a relatively fast rotation (v sin(i)~8km/s), slightly subsolar metallicity and a high-lithium abundance, A(Li)=2.4+/-0.2dex. We discuss IRAS12556-7731 within the context of other known lithium-rich K-type giants. Because it is close to the tip of the red giant branch, IRAS12556-7731 is the coolest lithium-rich giant known so far, and it is among the least massive and most luminous giants where enhancement of lithium has been detected. Among several possible explanations, we cannot preclude the possibility that the lithium enhancement and rapid rotation of the star were triggered by the engulfment of a brown dwarf or a planet.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a s ample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
112 - Santi Cassisi 2015
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${rm 0.01M_odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا