ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulated emission and Hawking radiation in black hole analogues

187   0   0.0 ( 0 )
 نشر من قبل Sergio Cacciatori
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which stimulated radiation is calculated too.

قيم البحث

اقرأ أيضاً

The theory of Hawking radiation can be tested in laboratory analogues of black holes. We use light pulses in nonlinear fiber optics to establish artificial event horizons. Each pulse generates a moving perturbation of the refractive index via the Ker r effect. Probe light perceives this as an event horizon when its group velocity, slowed down by the perturbation, matches the speed of the pulse. We have observed in our experiment that the probe stimulates Hawking radiation, which occurs in a regime of extreme nonlinear fiber optics where positive and negative frequencies mix.
123 - Peng Huang , Fang-Fang Yuan 2020
Following the initial work of Calcagni et al. on the black holes in multi-fractional theories, we focus on the Schwarzschild black hole in multi-fractional theory with q-derivatives. After presenting its Hawking and Hayward temperatures in detail, we verify these results by appealing to the well-known Hamilton-Jacobi and null geodesic methods of the tunnelling approach to Hawking radiation. A special emphasis is placed on the difference between the geometric and fractional frames.
107 - Qiyuan Pan , Jiliang Jing 2008
The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static and asymptotically flat black hole with spherical symmetry has been investigated. It is shown that the same initial entanglemen t for the state parameter $alpha$ and its normalized partners $sqrt{1-alpha^{2}}$ will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state has no longer distillable entanglement for any $alpha$. It is interesting to note that the mutual information in this limit equals to just half of the initially mutual information. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which just indicates the degradation of entanglement.
In this work, we investigate the Hawking radiation in higher dimensional Reissner-Nordstrom black holes as received by an observer, resides at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vic inity of the black hole horizon, are evaluated numerically. Apart from the case of four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordstrom metrics, and the results are found to be somewhat sensitive to the spacetime dimension. In general, it is observed that the transmission coefficients practically vanishes when the frequency of the emitted particle approaches zero. It increases with increasing frequency and eventually saturates to some value. For four-dimensional spacetime, the above result is shown to be mostly independent of the metrics parameter, neither of the orbital quantum number of the particle, once the location of the event horizon, $r_h$, and the product of the charges of the black hole and the particle $qQ$ are given. For higher-dimensional cases, on the other hand, the convergence becomes more slowly. Moreover, the difference between states with different orbital quantum numbers is found to be more significant. As the magnitude of the product of charges $qQ$ becomes more significant, the transmission coefficient exceeds one. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relation between the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
Hawking radiation from Unruhs and Canonical acoustic black hole is considered from viewpoint of anomaly cancellation method developed by Robinson and Wilczek. Thus, the physics near the horizon can be described using an infinite collection of massles s two-dimensional scalar fields in the background of a dilaton and the gravitational anomaly is canceled by the flux of a 1 + 1 dimensional blackbody at the Hawking temperature of the space-time. Consequently, by this method, we can get the Hawkings temperature for Canonical and Unruhs acoustic black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا