ﻻ يوجد ملخص باللغة العربية
In this work, with combined belief propagation (BP), mean field (MF) and expectation propagation (EP), an iterative receiver is designed for joint phase noise (PN) estimation, equalization and decoding in a coded communication system. The presence of the PN results in a nonlinear observation model. Conventionally, the nonlinear model is directly linearized by using the first-order Taylor approximation, e.g., in the state-of-the-art soft-input extended Kalman smoothing approach (soft-in EKS). In this work, MF is used to handle the factor due to the nonlinear model, and a second-order Taylor approximation is used to achieve Gaussian approximation to the MF messages, which is crucial to the low-complexity implementation of the receiver with BP and EP. It turns out that our approximation is more effective than the direct linearization in the soft-in EKS with similar complexity, leading to significant performance improvement as demonstrated by simulation results.
In this paper, we address the message-passing receiver design for the 3D massive MIMO-OFDM systems. With the aid of the central limit argument and Taylor-series approximation, a computationally efficient receiver that performs joint channel estimatio
An original expectation propagation (EP) based message passing framework is introduced, wherein transmitted symbols are considered to belong to the multivariate white Gaussian distribution family. This approach allows deriving a novel class of single
This paper presents a novel propagation (BP) based decoding algorithm for polar codes. The proposed algorithm facilitates belief propagation by utilizing the specific constituent codes that exist in the factor graph, which results in an express journ
We propose a fast and near-optimal approach to joint channel-estimation, equalization, and decoding of coded single-carrier (SC) transmissions over frequency-selective channels with few-bit analog-to-digital converters (ADCs). Our approach leverages
We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few b