ﻻ يوجد ملخص باللغة العربية
Single molecule localization microscopy (SMLM) techniques enable imaging biological samples well beyond the diffraction limit of light, but they vary significantly in their spatial and temporal resolutions. High-order statistical analysis of temporal fluctuations as in superresolution optical fluctuation imaging (SOFI) also enable imaging beyond diffraction limit, but usually at a lower resolution as compared to SMLM. Since the same data format is acquired for both methods, their algorithms can be applied to the same data set, and thus may be combined synergistically to improve overall imaging performance. Here, we find that SOFI converges much faster than SMLM, provides additive information to SMLM, and can efficiently reject background. We then show how SOFI-assisted SMLM imaging can improve SMLM image reconstruction by rejecting common sources of background, especially under low signal-to-background conditions. The performance of our approach was evaluated using a realistic simulation of fluorescence imaging we developed and further demonstrated on experimental SMLM images of the plasma membrane of activated fixed and live T cells. Our approach significantly enhances SMLM performance under demanding imaging conditions and could set an example for synergizing additional imaging techniques.
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important
Cells rely on focal adhesions (FAs) to carry out a variety of important tasks, including motion, environmental sensing, and adhesion to the extracellular matrix. Although attaining a fundamental characterization of FAs is a compelling goal, their ext
Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments,
Single molecule localization microscopy is widely used in biological research for measuring the nanostructures of samples smaller than the diffraction limit. This study uses multifocal plane microscopy and addresses the 3D single molecule localizatio
Voltage-gated sodium (Na$_mathrm{v}$) channels are responsible for the depolarizing phase of the action potential in most nerve cells, and Na$_mathrm{v}$ channel localization to the axon initial segment is vital to action potential initiation. Na$_ma