ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas

132   0   0.0 ( 0 )
 نشر من قبل Daniele Bonfiglio Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of magnetic perturbations (MPs) on the helical self-organization of shaped tokamak plasmas is discussed in the framework of the nonlinear 3D MHD model. Numerical simulations performed in toroidal geometry with the textsc{pixie3d} code [L. Chacon, Phys. Plasmas {bf 15}, 056103 (2008)] show that $n=1$ MPs significantly affect the spontaneous quasi-periodic sawtoothing activity of such plasmas. In particular, the mitigation of sawtooth oscillations is induced by $m/n=1/1$ and $2/1$ MPs. These numerical findings provide a confirmation of previous circular tokamak simulations, and are in agreement with tokamak experiments in the RFX-mod and DIII-D devices. Sawtooth mitigation via MPs has also been observed in reversed-field pinch simulations and experiments. The effect of MPs on the stochastization of the edge magnetic field is also discussed.

قيم البحث

اقرأ أيضاً

The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma ene rgy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. The effect of the RMPs is found to be scenario dependent. In one scenario the mitigation is only due to a large density pump out event and if the density is recovered by gas puffing a return to type I ELMs is observed. In another scenario sustained ELM mitigation can be achieved irrespective of the amount of fuelling. Despite a large scan of parameters complete ELM suppression has not been achieved. The results have been compared to modelling performed using either the vacuum approximation or including the plasma response. The requirement for a resonant condition, that is an optimum alignment of the perturbation with the plasma, has been confirmed by performing a scan in the pitch angle of the applied field.
100 - P.-A. Gourdain 2017
The Hall term has often been neglected in MHD codes as it is difficult to compute. Nevertheless setting it aside for numerical reasons led to ignoring it altogether. This is especially problematic when dealing with tokamak physics as the Hall term cannot be neglected as this paper shows.
Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three fluid closure models: the single adiabatic model (SA), the double adiabatic model (CGL) and the incompressible model. A study on the plasma continuous spectrum shows that in low beta, large aspect ratio plasma, the main impact of anisotropy lies in the modification of the BAE gap and the sound frequency, if the q profile is conserved. The SA model preserves the BAE gap structure as ideal MHD, while in CGL the lowest frequency branch does not touch zero frequency at the resonant flux surface where $m+nq=0$, inducing a gap at very low frequency. Also, the BAE gap frequency with bi-Maxwellian distribution in both model becomes higher if $p_perp > p_parallel$ with a q profile dependency. As a benchmark of the code, we study the m/n=1/1 internal kink mode. Numerical calculation of the marginal stability boundary with bi-Maxwellian distribution shows a good agreement with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov. J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if $p_parallel < p_perp (p_parallel > p_perp)$.
The plasma response from an external n = 2 magnetic perturbation field in ASDEX Upgrade has been measured using mainly electron cyclotron emission (ECE) diagnostics and a rigid rotating field. To interpret ECE and ECE-imaging (ECE-I) measurements acc urately, forward modeling of the radiation transport has been combined with ray tracing. The measured data is compared to synthetic ECE data generated from a 3D ideal magnetohydrodynamics (MHD) equilibrium calculated by VMEC. The measured amplitudes of the helical displacement around the low field side midplane are in reasonable agreement with the one from the synthetic VMEC diagnostics. Both exceed the prediction from the vacuum field calculations and indicate the presence of a kink response at the edge, which amplifies the perturbation. VMEC and MARS-F have been used to calculate the properties of this kink mode. The poloidal mode structure of the magnetic perturbation of this kink mode at the edge peaks at poloidal mode numbers larger than the resonant components |m| > |nq|, whereas the poloidal mode structure of its displacement is almost resonant |m| ~ |nq|. This is expected from ideal MHD in the proximity of rational surfaces. The displacement measured by ECE-I confirms this resonant response.
Seven new 3D modes of self-organization in DC glow discharges are computed in the framework of the simplest self-consistent model of glow discharge. Some of the modes branch off from and rejoin the 1D mode, while others bifurcate from a 2D or a 3D mo de. The patterns associated with computed 3D modes are similar to patterns observed in the experiment. The computed transition from a spot pattern comprising five spots into a pattern comprising a ring spot also was observed in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا