ﻻ يوجد ملخص باللغة العربية
The ability of background discrimination using pulse shape discrimination (PSD) in broad-energy germanium (BEGe) detectors makes them as competitive candidates for neutrinoless double beta decay (0{ u}b{eta}b{eta}) experiments. The measurements of key parameters for detector modeling in a commercial p-type BEGe detector are presented in this paper. Point-like sources were used to investigate the energy resolution and linearity of the detector. A cylindrical volume source was used for the efficiency calibration. With an assembled device for source positioning, a collimated 133Ba point-like source was used to scan the detector and investigate the active volume. A point-like source of 241Am was used to measure the dead layer thicknesses, which are approximately 0.17 mm on the front and 1.18 mm on the side. The described characterization method will play an important role in the 0{ u}b{eta}b{eta} experiments with BEGe detectors at China JinPing underground Laboratory (CJPL) in the future.
In a neutrinoless double-beta decay ($0 ubetabeta$) experiment, energy resolution is important to distinguish between $0 ubetabeta$ and background events. CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer (CANDLES)
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operate
P-type point contact (PPC) germanium detectors are used in rare event and low-background searches, including neutrinoless double beta (0vbb) decay, low-energy nuclear recoils, and coherent elastic neutrino-nucleus scattering. The detectors feature an
Following work done in the energy region above 100 keV, the high-precision calibration of a co-axial high-purity germanium detector has been continued in the energy region below 100 keV. Previous measurements or Monte-Carlo simulations have been repe
The Gas Amplifier Detector with Germanium Tagging (GADGET) is a new detection system devoted to the measurement of weak, low-energy $beta$-delayed proton decays relevant for nuclear astrophysics studies. It is comprised of a new gaseous Proton Detect