ﻻ يوجد ملخص باللغة العربية
We present a universal characterization scheme for chimera states applicable to both numerical and experimental data sets. The scheme is based on two correlation measures that enable a meaningful definition of chimera states as well as their classification into three categories: stationary, turbulent and breathing. In addition, these categories can be further subdivided according to the time-stationarity of these two measures. We demonstrate that this approach both is consistent with previously recognized chimera states and enables us to classify states as chimeras which have not been categorized as such before. Furthermore, the scheme allows for a qualitative and quantitative comparison of experimental chimeras with chimeras obtained through numerical simulations.
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with
We study the dynamics of coupled systems, ranging from maps supporting chaotic attractors to nonlinear differential equations yielding limit cycles, under different coupling classes, connectivity ranges and initial states. Our focus is the robustness
Oscillatory systems with long-range or global coupling offer promising insight into the interplay between high-dimensional (or microscopic) chaotic motion and collective interaction patterns. Within this paper, we use Lyapunov analysis to investigate
We consider networks formed from two populations of identical oscillators, with uniform strength all-to-all coupling within populations, and also between populations, with a different strength. Such systems are known to support chimera states in whic
In this communication, the incorrectness of phenomenological approach to the logistic growth equation, proposed by Castorina et al. is presented in detail. The correct phenomenological approach to logistic growth equation is also proposed here. It is