ﻻ يوجد ملخص باللغة العربية
There is still no general consensus on how one can describe the out-of-equilibrium phenomena in matter induced by an ultrashort light pulse. We investigate the pulse-induced dynamics in a layered Dirac semimetal SrMnBi2 by pump-and-probe photoemission spectroscopy. At ~<1 ps, the electronic recovery slowed upon increasing the pump power. Such a bottleneck-type slowing is expected in a two-temperature model (TTM) scheme, although opposite trends have been observed to date in graphite and in cuprates. Subsequently, an unconventional power-law cooling took place at ~100 ps, indicating that spatial heat diffusion is still ill defined at ~100 ps. We identify that the successive dynamics before the emergence of heat diffusion is a canonical realization of a TTM scheme. Criteria for the applicability of the scheme is also provided.
The electronic anomalous Hall effect (AHE), where charge carriers acquire a velocity component orthogonal to an applied electric field, is one of the most fundamental and widely studied phenomena in physics. There are several different AHE mechanisms
Searching for performant multiferroic materials attracts general research interests in energy science as they have been increasingly exploited as the conversion media among thermal, electric, magnetic and mechanical energies by using their temperatur
Band-crossings occurring on a mirror plane are compelled to form a nodal loop in the momentum space without spin-orbit coupling (SOC). In the presence of other equivalent mirror planes, multiple such nodal loops can combine to form interesting nodal-
Dirac states hosted by Sb/Bi square nets are known to exist in the layered antiferromagnetic AMnX$_2$ (A = Ca/Sr/Ba/Eu/Yb, X=Sb/Bi) material family the space group to be P4/nmm or I4/mmm. In this paper, we present a comprehensive study of quantum tra
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations