ﻻ يوجد ملخص باللغة العربية
We revisit the tunneling picture for the Hawking effect in light of the charged Nariai manifold, because this general relativistic solution, which displays two horizons, provides the bonus to allow the knowledge of exact solutions of the field equations. We first perform a revisitation of the tunneling ansatz in the framework of particle creation in external fields a la Nikishov, which corroborates the interpretation of the semiclassical emission rate Gamma as the conditional probability rate for the creation of a couple of particles from the vacuum. Then, particle creation associated with the Hawking effect on the Nariai manifold is calculated in two ways. On the one hand, we apply the Hamilton Jacobi formalism for tunneling, in the case of a charged scalar field on the given background. On the other hand, the knowledge of the exact solutions for the Klein Gordon equations on Nariai manifold, and their analytic properties on the extended manifold, allow us a direct computation of the flux of particles leaving the horizon, and, as a consequence, we obtain a further corroboration of the semiclassical tunneling picture from the side of S-matrix formalism.
Hawking radiation from Unruhs and Canonical acoustic black hole is considered from viewpoint of anomaly cancellation method developed by Robinson and Wilczek. Thus, the physics near the horizon can be described using an infinite collection of massles
In 1974 Steven Hawking showed that black holes emit thermal radiation, which eventually causes them to evaporate. The problem of the fate of information in this process is known as the black hole information paradox. It inspired a plethora of theoret
We derive the Hawking radiation spectrum of anyons, namely particles in (2+1)-dimension obeying fractional statistics, from a BTZ black hole, in the tunneling formalism. We examine ways of measuring the spectrum in experimentally realizable systems in the laboratory.
We consider an approach to the Hawking effect which is free of the asymptotic behavior of the metric or matter fields, and which is not confined to one specific metric configuration. As a result, we find that for a wide class of spacetime horizons th
The theory of Hawking radiation can be tested in laboratory analogues of black holes. We use light pulses in nonlinear fiber optics to establish artificial event horizons. Each pulse generates a moving perturbation of the refractive index via the Ker