ترغب بنشر مسار تعليمي؟ اضغط هنا

Adjusting for Scorekeeper Bias in NBA Box Scores

106   0   0.0 ( 0 )
 نشر من قبل Matthew van Bommel
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Box score statistics in the National Basketball Association are used to measure and evaluate player performance. Some of these statistics are subjective in nature and since box score statistics are recorded by scorekeepers hired by the home team for each game, there exists potential for inconsistency and bias. These inconsistencies can have far reaching consequences, particularly with the rise in popularity of daily fantasy sports. Using box score data, we estimate models able to quantify both the bias and the generosity of each scorekeeper for two of the most subjective statistics: assists and blocks. We then use optical player tracking data for the 2014-2015 season to improve the assist model by including other contextual spatio-temporal variables such as time of possession, player locations, and distance traveled. From this model, we present results measuring the impact of the scorekeeper and of the other contextual variables on the probability of a pass being recorded as an assist. Results for adjusting season assist totals to remove scorekeeper influence are also presented.



قيم البحث

اقرأ أيضاً

This paper investigates the problem of adjusting for spatial effects in genomic prediction. Despite being seldomly considered in genomic prediction, spatial effects often affect phenotypic measurements of plants. We consider a Gaussian random field m odel with an additive covariance structure that incorporates genotype effects, spatial effects and subpopulation effects. An empirical study shows the existence of spatial effects and heterogeneity across different subpopulation families, while simulations illustrate the improvement in selecting genotypically superior plants by adjusting for spatial effects in genomic prediction.
Our work was motivated by a recent study on birth defects of infants born to pregnant women exposed to a certain medication for treating chronic diseases. Outcomes such as birth defects are rare events in the general population, which often translate to very small numbers of events in the unexposed group. As drug safety studies in pregnancy are typically observational in nature, we control for confounding in this rare events setting using propensity scores (PS). Using our empirical data, we noticed that the estimated odds ratio for birth defects due to exposure varied drastically depending on the specific approach used. The commonly used approaches with PS are matching, stratification, inverse probability weighting (IPW) and regression adjustment. The extremely rare events setting renders the matching or stratification infeasible. In addition, the PS itself may be formed via different approaches to select confounders from a relatively long list of potential confounders. We carried out simulation experiments to compare different combinations of approaches: IPW or regression adjustment, with 1) including all potential confounders without selection, 2) selection based on univariate association between the candidate variable and the outcome, 3) selection based on change in effects (CIE). The simulation showed that IPW without selection leads to extremely large variances in the estimated odds ratio, which help to explain the empirical data analysis results that we had observed. The simulation also showed that IPW with selection based on univariate association with the outcome is preferred over IPW with CIE. Regression adjustment has small variances of the estimated odds ratio regardless of the selection methods used.
Strikingly few Nobel laureates within medicine, natural and social sciences are women. Although it is obvious that there are fewer women researchers within these fields, does this gender ratio still fully account for the low number of female Nobel la ureates? We examine whether women are awarded the Nobel Prizes less often than the gender ratio suggests. Based on historical data across four scientific fields and a Bayesian hierarchical model, we quantify any possible bias. The model reveals, with exceedingly large confidence, that indeed women are strongly under-represented among Nobel laureates across all disciplines examined.
Adversarial loss in a conditional generative adversarial network (GAN) is not designed to directly optimize evaluation metrics of a target task, and thus, may not always guide the generator in a GAN to generate data with improved metric scores. To ov ercome this issue, we propose a novel MetricGAN approach with an aim to optimize the generator with respect to one or multiple evaluation metrics. Moreover, based on MetricGAN, the metric scores of the generated data can also be arbitrarily specified by users. We tested the proposed MetricGAN on a speech enhancement task, which is particularly suitable to verify the proposed approach because there are multiple metrics measuring different aspects of speech signals. Moreover, these metrics are generally complex and could not be fully optimized by Lp or conventional adversarial losses.
Rheumatoid arthritis clinical trials are strategically designed to collect the disease activity score of each patient over multiple clinical visits, meanwhile a patient may drop out before their intended completion due to various reasons. The dropout terminates the longitudinal data collection on the patients activity score. In the presence of informative dropout, that is, the dropout depends on latent variables from the longitudinal process, simply applying a model to analyze the longitudinal outcomes may lead to biased results because the assumption of random dropout is violated. In this paper we develop a data driven Bayesian joint model for modeling DAS28 scores and competing risk informative drop out. The motivating example is a clinical trial of Etanercept and Methotrexate with radiographic Patient Outcomes (TEMPO, Keystone et.al).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا