ﻻ يوجد ملخص باللغة العربية
We consider the problem of computing a $(1+epsilon)$-approximation of the Hamming distance between a pattern of length $n$ and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem, giving Alice the first half of the stream and Bob the second half. We show the following: (1) If Alice and Bob both share the pattern then there is an $O(epsilon^{-4} log^2 n)$ bit randomised one-way communication protocol. (2) If only Alice has the pattern then there is an $O(epsilon^{-2}sqrt{n}log n)$ bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for $(1+epsilon)$-approximate Hamming distance which give worst case running time guarantees per arriving symbol. (1) For binary input alphabets there is an $O(epsilon^{-3} sqrt{n} log^{2} n)$ space and $O(epsilon^{-2} log{n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm. (2) For general input alphabets there is an $O(epsilon^{-5} sqrt{n} log^{4} n)$ space and $O(epsilon^{-4} log^3 {n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm.
We show tight bounds for online Hamming distance computation in the cell-probe model with word size w. The task is to output the Hamming distance between a fixed string of length n and the last n symbols of a stream. We give a lower bound of Omega((d
Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate
We describe a new statistical test for pseudorandom number generators (PRNGs). Our test can find bias induced by dependencies among the Hamming weights of the outputs of a PRNG, even for PRNGs that pass state-of-the-art tests of the same kind from th
We consider the problem of dictionary matching in a stream. Given a set of strings, known as a dictionary, and a stream of characters arriving one at a time, the task is to report each time some string in our dictionary occurs in the stream. We prese
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing t