ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissortativity and duplications in Oral cancer

137   0   0.0 ( 0 )
 نشر من قبل Pramod Shinde
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

More than 300,000 new cases worldwide are being diagnosed with oral cancer annually. Complexity of oral cancer renders designing drug targets very difficult. We analyse protein-protein interaction network for the normal and oral cancer tissue and detect crucial changes in the structural properties of the networks in terms of the interactions of the hub proteins and the degree-degree correlations. Further analysis of the spectra of both the networks, while exhibiting universal statistical behavior, manifest distinction in terms of the zero degeneracy, providing insight to the complexity of the underlying system.



قيم البحث

اقرأ أيضاً

One of the most challenging problems in biomedicine and genomics is the identification of disease biomarkers. In this study, proteomics data from seven major cancers were used to construct two weighted protein-protein interaction (PPI) networks i.e., one for the normal and another for the cancer conditions. We developed rigorous, yet mathematically simple, methodology based on the degeneracy at -1 eigenvalues to identify structural symmetry or motif structures in network. Utilising eigenvectors corresponding to degenerate eigenvalues in the weighted adjacency matrix, we identified structural symmetry in underlying weighted PPI networks constructed using seven cancer data. Functional assessment of proteins forming these structural symmetry exhibited the property of cancer hallmarks. Survival analysis refined further this protein list proposing BMI, MAPK11, DDIT4, CDKN2A, and FYN as putative multi-cancer biomarkers. The combined framework of networks and spectral graph theory developed here can be applied to identify symmetrical patterns in other disease networks to predict proteins as potential disease biomarkers.
Oral cancer speech is a disease which impacts more than half a million people worldwide every year. Analysis of oral cancer speech has so far focused on read speech. In this paper, we 1) present and 2) analyse a three-hour long spontaneous oral cance r speech dataset collected from YouTube. 3) We set baselines for an oral cancer speech detection task on this dataset. The analysis of these explainable machine learning baselines shows that sibilants and stop consonants are the most important indicators for spontaneous oral cancer speech detection.
There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation i s a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked by the network influence strategy, such as by edgetic, multi-target, or allo-network drugs. Cancer stem cells need special diagnosis and targeting, since their dormant and rapidly proliferating forms may have more rigid, or more plastic networks, respectively. The extremely high ability to change their rigidity/plasticity may be a key differentiating hallmark of cancer stem cells. The application of early stage-optimized anti-cancer drugs to late-stage patients may be a reason of many failures in anti-cancer therapies. Our hypotheses presented here underlie the need for patient-specific multi-target therapies applying the correct ratio of central hits and network influences -- in an optimized sequence.
A computational model of aquaporin regulation in cancer cells has been constructed as a Qualitative Network in the software BioModelAnalyzer (BMA). The model connects some important aquaporins expressed in human cancer to common phenotypes via a numb er of fundamental, dysregulated signalling pathways. Based on over 60 publications, this model can not only reproduce the results reported in a discrete, qualitative manner, but also reconcile the seemingly incompatible phenotype with research consensus by suggesting molecular mechanisms accountable for it. Novel predictions have also been made by mimicking real-life experiments in the model.
Cancer forms a robust system and progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer progression and to develop effective anti-cancer therapies. Here, we propose a novel model of the cancer system as a Boolean state space in which a Boolean network, built from protein interaction and gene-expression data from different stages of cancer, transits between Boolean satisfiability states by editing interactions and flipping genes. The application of our model (called BoolSpace) on three case studies - pancreatic and breast tumours in human and post spinal-cord injury in rats - reveals valuable insights into the phenomenon of cancer progression. In particular, we notice that several of the genes flipped are serine/threonine kinases which act as natural cellular switches and that different sets of genes are flipped during the initial and final stages indicating a pattern to tumour progression. We hypothesize that robustness of cancer partly stems from passing of the baton between genes at different stages, and therefore an effective therapy should target a cover set of these genes. A C/C++ implementation of BoolSpace is freely available at: http://www.bioinformatics.org.au/tools-data
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا