ﻻ يوجد ملخص باللغة العربية
We demonstrate, both numerically and analytically, that it is possible to generate two photons from one and only one photon. We characterize the output two photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that close to perfect downconversion with efficiency over 99% is reachable using state-of-the-art Waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three level atom is a transmon.
Spontaneous parametric downconversion is the primary source to generate entangled photon pairs in quantum photonics laboratories. Depending on the experimental design, the generated photon pairs can be correlated in the frequency spectrum, polarisati
We introduce a circuit quantum electrodynamical setup for a single-photon transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are e
We present a realistic scheme for how to construct a single-photon transistor where the presence or absence of a single microwave photon controls the propagation of a subsequent strong signal signal field. The proposal is designed to work with existi
Understanding and mitigating loss channels due to two-level systems (TLS) is one of the main cornerstones in the quest of realizing long photon lifetimes in superconducting quantum circuits. Typically, the TLS to which a circuit couples are modeled a
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconduc