ﻻ يوجد ملخص باللغة العربية
Extensive and independent observations of Type Ia supernova (SN Ia) SN 2013dy are presented, including a larger set of $UBVRI$ photometry and optical spectra from a few days before the peak brightness to $sim$ 200 days after explosion, and ultraviolet (UV) photometry spanning from $t approx -10$ days to $t approx +15$ days referring to the $B$ band maximum. The peak brightness (i.e., $M_{rm B} = -19.65 pm 0.40$ mag, $L_{rm max} = [1.95 pm 0.55] times 10^{43}$ erg s$^{-1}$) and the mass of synthesised $^{56}$Ni (i.e., $M$($^{56}$Ni) = 0.90 $pm$ 0.26 M$_{odot}$) are calculated, and they conform to the expectation for a SN Ia with a slow decline rate (i.e., $Delta m_{15}(B)$ = 0.90 $pm$ 0.03 mag, Phillips 1993). However, the near infrared (NIR) brightness of this SN (i.e., $M_{rm H} = -17.33 pm 0.30$ mag) is at least 1.0 mag fainter than usual. Besides, spectroscopy classification reveals that SN 2013dy resides on the border of core normal and shallow silicon subclasses in the Branch et al. (2009) classification scheme, or on the border of the normal velocity SNe Ia and 91T/99aa-like events in the Wang et al. (2009a) system. These suggest that SN 2013dy is a slow-declining SN Ia located on the transitional region of nominal spectroscopic subclasses and might not be a typical normal sample of SNe Ia.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma
The Type~Ia supernova (SN~Ia) 2017cfd in IC~0511 (redshift z = 0.01209+- 0.00016$) was discovered by the Lick Observatory Supernova Search 1.6+-0.7 d after the fitted first-light time (FFLT; 15.2 d before B-band maximum brightness). Photometric and s
Radiative transfer studies of Type Ia supernovae (SNe Ia) hold the promise of constraining both the time-dependent density profile of the SN ejecta and its stratification by element abundance which, in turn, may discriminate between different explosi
The very nearby Type Ia supernova 2014J in M82 offers a rare opportunity to study the physics of thermonuclear supernovae at extremely late phases ($gtrsim$800 days). Using the Hubble Space Telescope (HST), we obtained six epochs of high precision ph
We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are charact