ﻻ يوجد ملخص باللغة العربية
In this work, we study stability of distributed filtering of Markov chains with finite state space, partially observed in conditionally Gaussian noise. We consider a nonlinear filtering scheme over a Distributed Network of Agents (DNA), which relies on the distributed evaluation of the likelihood part of the centralized nonlinear filter and is based on a particular specialization of the Alternating Direction Method of Multipliers (ADMM) for fast average consensus. Assuming the same number of consensus steps between any two consecutive noisy measurements for each sensor in the network, we fully characterize a minimal number of such steps, such that the distributed filter remains uniformly stable with a prescribed accuracy level, {varepsilon} in (0,1], within a finite operational horizon, T, and across all sensors. Stability is in the sense of the ell_1-norm between the centralized and distribut
In this paper, we consider an anticipative nonlinear filtering problem, in which the observation noise is correlated with the past of the signal. This new signal-observation model has its applications in both finance models with insider trading and i
The classical asymptotic theory for parametric $M$-estimators guarantees that, in the limit of infinite sample size, the excess risk has a chi-square type distribution, even in the misspecified case. We demonstrate how self-concordance of the loss al
Hogwild! implements asynchronous Stochastic Gradient Descent (SGD) where multiple threads in parallel access a common repository containing training data, perform SGD iterations and update shared state that represents a jointly learned (global) model
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This
We revisit the development of grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization: The