ﻻ يوجد ملخص باللغة العربية
Coherent transport of excitations along chains of coupled quantum systems represents an interesting problem with a number of applications ranging from quantum optics to solar cell technology. A convenient tool for studying such processes are quantum walks. They allow to determine in a quantitative way all the process features. We study the survival probability and the transport efficiency on a simple, highly symmetric graph represented by a ring. The propagation of excitation is modeled by a discrete-time (coined) quantum walk. For a two-state quantum walk, where the excitation (walker) has to leave its actual position to the neighboring sites, the survival probability decays exponentially and the transport efficiency is unity. The decay rate of the survival probability can be estimated using the leading eigenvalue of the evolution operator. However, if the excitation is allowed to stay at its present position, i.e. the propagation is modeled by a lazy quantum walk, then part of the wave-packet can be trapped in the vicinity of the origin and never reaches the sink. In such a case, the survival probability does not vanish and the excitation transport is not efficient. The dependency of the transport efficiency on the initial state is determined. Nevertheless, we show that for some lazy quantum walks dynamical percolations of the ring eliminate the trapping effect and efficient excitation transport can be achieved.
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker.
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a q
Quantum walks constitute a versatile platform for simulating transport phenomena on discrete graphs including topological material properties while providing a high control over the relevant parameters at the same time. To experimentally access and d
Quantum anomalies lead to finite expectation values that defy the apparent symmetries of a system. These anomalies are at the heart of topological effects in fundamental, electronic, photonic and ultracold atomic systems, where they result in a uniqu
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam spl