ﻻ يوجد ملخص باللغة العربية
We have made {it XMM-Newton/} observations of 14 Galactic Cepheids that have candidate resolved ($geq$5$arcsec$) companion stars based on our earlier {it HST/} WFC3 imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. {it XMM-Newton/} exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 $ M_odot$.) The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S~Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S~Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S~Mus and R~Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent {it Chandra} observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5$arcsec$ (the limit for this study) which are the likely source of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude.
We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera~3 (WFC3) of 70 Galactic Cepheids, typically within 1~kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area wher
Cepheids in multiple systems provide information on the outcome of the formation of massive stars. They can also lead to exotic end-stage objects. This study concludes our survey of 70 galactic Cepheids using the {it Hubble Space Telescope} (HST) Wid
Masses of classical Cepheids of 3 to 11 M$odot$ are predicted by theory but those measured, clump between 3.6 and 5 M$odot$. As a result, their mass-luminosity relation is poorly constrained, impeding our understanding of basic stellar physics and th
X-ray bursts have recently been discovered in the Cepheids $delta$ Cep and $beta$ Dor modulated by the pulsation cycle. We have obtained an observation of the Cepheid $eta$ Aql with the XMM-Newton satellite at the phase of maximum radius, the phase a
The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadi