ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved Companions of Cepheids: Testing the Candidates with X-Ray Observations

85   0   0.0 ( 0 )
 نشر من قبل Nancy Remage Evans
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have made {it XMM-Newton/} observations of 14 Galactic Cepheids that have candidate resolved ($geq$5$arcsec$) companion stars based on our earlier {it HST/} WFC3 imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. {it XMM-Newton/} exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 $ M_odot$.) The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S~Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S~Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S~Mus and R~Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent {it Chandra} observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5$arcsec$ (the limit for this study) which are the likely source of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude.



قيم البحث

اقرأ أيضاً

We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera~3 (WFC3) of 70 Galactic Cepheids, typically within 1~kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area wher e companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color--magnitude diagrams, and having separations $geq$5$$ from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K ull. Thus the fact that the two most probable companions (those of FF~Aql and RV~Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4,000~AU in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations ($delta$~Cep and S~Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations $>!5$ is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields.
Cepheids in multiple systems provide information on the outcome of the formation of massive stars. They can also lead to exotic end-stage objects. This study concludes our survey of 70 galactic Cepheids using the {it Hubble Space Telescope} (HST) Wid e Field Camera~3 (WFC3) with images at two wavelengths to identify companions closer than $5arcsec$. In the entire WFC3 survey we identify 16 probable companions for 13 Cepheids. The seven Cepheids having resolved candidate companions within $2$ all have the surprising property of themselves being spectroscopic binaries (as compared with a 29% incidence of spectroscopic binaries in the general Cepheid population). That is a strong suggestion that an inner binary is linked to the scenario of a third companion within a few hundred~AU ull. This characteristic is continued for more widely separated companions. Under a model where the outer companion is formed first, it is unlikely that it can anticipate a subsequent inner binary. Rather it is more likely that a triple system has undergone dynamical interaction, resulting in one star moving outward to its current location. {it Chandra} and {it Gaia} data as well as radial velocities and HSTSTIS and {it IUE} spectra are used to derive properties of the components of the Cepheid systems. The colors of the companion candidates show a change in distribution at approximately 2000~AU separations, from a range including both hot and cool colors for closer companions, to only low-mass companions for wider separations.
Masses of classical Cepheids of 3 to 11 M$odot$ are predicted by theory but those measured, clump between 3.6 and 5 M$odot$. As a result, their mass-luminosity relation is poorly constrained, impeding our understanding of basic stellar physics and th e Leavitt Law. All Cepheid masses come from the analysis of 11 binary systems, including only 5 double-lined and well-suited for accurate dynamical mass determination. We present a project to analyze a new, numerous group of Cepheids in double-lined binary (SB2) systems to provide mass determinations in a wide mass interval and study their evolution. We analyze a sample of 41 candidate binary LMC Cepheids spread along the P-L relation, that are likely accompanied by luminous red giants, and present indirect and direct indicators of their binarity. In a spectroscopic study of a subsample of 18 brightest candidates, for 16 we detected lines of two components in the spectra, already quadrupling the number of Cepheids in SB2 systems. Observations of the whole sample may thus lead to quadrupling all the Cepheid mass estimates available now. For the majority of our candidates, erratic intrinsic period changes dominate over the light travel-time effect due to binarity. However, the latter may explain the periodic phase modulation for 4 Cepheids. Our project paves the way for future accurate dynamical mass determinations of Cepheids in the LMC, Milky Way, and other galaxies, which will potentially increase the number of known Cepheid masses even 10-fold, hugely improving our knowledge about these important stars.
X-ray bursts have recently been discovered in the Cepheids $delta$ Cep and $beta$ Dor modulated by the pulsation cycle. We have obtained an observation of the Cepheid $eta$ Aql with the XMM-Newton satellite at the phase of maximum radius, the phase a t which there is a burst of X-rays in $delta$ Cep. No X-rays were seen from the Cepheid $eta$ Aql at this phase, and the implications for Cepheid upper atmospheres are discussed. We have also used the combination of X-ray sources and Gaia and 2MASS data to search for a possible grouping around the young intermediate mass Cepheid. No indication of such a group was found.
The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadi an MOST satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modeled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O-C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا