ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection

46   0   0.0 ( 0 )
 نشر من قبل Christopher Harshaw
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called GraphPrints. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets -- small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84% at the time-interval level, and 0.05% at the IP-level with 100% true positive rates at both.



قيم البحث

اقرأ أيضاً

Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications. Recent approaches have achieved significant progress in this topic, but there is remaining limitations. One major limitatio n is that they do not capture the relationships between different time-series explicitly, resulting in inevitable false alarms. In this paper, we propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue. Our framework considers each univariate time-series as an individual feature and includes two graph attention layers in parallel to learn the complex dependencies of multivariate time-series in both temporal and feature dimensions. In addition, our approach jointly optimizes a forecasting-based model and are construction-based model, obtaining better time-series representations through a combination of single-timestamp prediction and reconstruction of the entire time-series. We demonstrate the efficacy of our model through extensive experiments. The proposed method outperforms other state-of-the-art models on three real-world datasets. Further analysis shows that our method has good interpretability and is useful for anomaly diagnosis.
As the communication industry has connected distant corners of the globe using advances in network technology, intruders or attackers have also increased attacks on networking infrastructure commensurately. System administrators can attempt to preven t such attacks using intrusion detection tools and systems. There are many commercially available signature-based Intrusion Detection Systems (IDSs). However, most IDSs lack the capability to detect novel or previously unknown attacks. A special type of IDSs, called Anomaly Detection Systems, develop models based on normal system or network behavior, with the goal of detecting both known and unknown attacks. Anomaly detection systems face many problems including high rate of false alarm, ability to work in online mode, and scalability. This paper presents a selective survey of incremental approaches for detecting anomaly in normal system or network traffic. The technological trends, open problems, and challenges over anomaly detection using incremental approach are also discussed.
An experiment to study the entropy method for an anomaly detection system has been performed. The study has been conducted using real data generated from the distributed sensor networks at the Intel Berkeley Research Laboratory. The experimental resu lts were compared with the elliptical method and has been analyzed in two dimensional data sets acquired from temperature and humidity sensors across 52 micro controllers. Using the binary classification to determine the upper and lower boundaries for each series of sensors, it has been shown that the entropy method are able to detect more number of out ranging sensor nodes than the elliptical methods. It can be argued that the better result was mainly due to the lack of elliptical approach which is requiring certain correlation between two sensor series, while in the entropy approach each sensor series is treated independently. This is very important in the current case where both sensor series are not correlated each other.
71 - Weizun Zhao 2020
Safety is a top priority for civil aviation. Data mining in digital Flight Data Recorder (FDR) or Quick Access Recorder (QAR) data, commonly referred as black box data on aircraft, has gained interest from researchers, airlines, and aviation regulati on agencies for safety management. New anomaly detection methods based on supervised or unsupervised learning have been developed to monitor pilot operations and detect any risks from onboard digital flight data recorder data. However, all existing anomaly detection methods are offline learning - the models are trained once using historical data and used for all future predictions. In practice, new QAR data are generated by every flight and collected by airlines whenever a datalink is available. Offline methods cannot respond to new data in time. Though these offline models can be updated by being re-trained after adding new data to the original training set, it is time-consuming and computational costly to train a new model every time new data come in. To address this problem, we propose a novel incremental anomaly detection method to identify common patterns and detect outliers in flight operations from FDR data. The proposed method is based on Gaussian Mixture Model (GMM). An initial GMM cluster model is trained on historical offline data. Then, it continuously adapts to new incoming data points via an expectation-maximization (EM) algorithm. To track changes in flight operation patterns, only model parameters need to be saved, not the raw flight data. The proposed method was tested on two sets of simulation data. Comparable results were found from the proposed online method and a classic offline model. A real-world application of the proposed method is demonstrated using FDR data from daily operations of an airline. Results are presented and future challenges of using online learning scheme for flight data analytics are discussed.
Given a large number of low-level heterogeneous categorical alerts from an anomaly detection system, how to characterize complex relationships between different alerts, filter out false positives, and deliver trustworthy rankings and suggestions to e nd users? This problem is motivated by and generalized from applications in enterprise security and attack scenario reconstruction. While existing techniques focus on either reconstructing abnormal scenarios or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand anomaly behaviors. In this paper, we propose CAR, a collaborative alerts ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a tree-based model to capture both short-term correlations and long-term dependencies in each alert sequence, which identifies abnormal action sequences. Then, an embedding-based model is employed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into one optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments, using real-world enterprise monitoring data and real attacks launched by professional hackers, show that CAR can accurately identify true positive alerts and successfully reconstruct attack scenarios at the same time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا