ﻻ يوجد ملخص باللغة العربية
Optical injection and detection of charge currents can complement conventional transport and photoemission measurements without the necessity of invasive contact that may disturb the system being examined. This is a particular concern for the surface states of a topological insulator. In this work one- and two-color sources of photocurrents are examined in epitaxial, thin films of Bi2Se3. We demonstrate that optical excitation and terahertz detection simultaneously captures one- and two- color photocurrent contributions, as previously not required in other material systems. A method is devised to isolate the two components, and in doing so each can be related to surface or bulk excitations through symmetry. This strategy allows surface states to be examined in a model system, where they have independently been verified with angle-resolved photoemission spectroscopy.
Films of the topological insulator Bi2Se3 are grown by molecular beam epitaxy with in-situ reflection high-energy electron diffraction. The films are shown to be high-quality by X-ray reflectivity and diffraction and atomic-force microscopy. Quantum
Topological insulators (TIs) are predicted to be composed of an insulating bulk state along with conducting channels on the boundary of the material. In Bi2Se3, however, the Fermi level naturally resides in the conduction band due to intrinsic doping
In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states
By studying Fe-doped ZnO pellets and thin films with various x-ray spectroscopic techniques, and complementing this with density functional theory calculations, we find that Fe-doping in bulk ZnO induces isovalent (and isostructural) cation substitut
We theoretically investigate the one-color injection currents and shift currents in zigzag graphene nanoribbons with applying a static electric field across the ribbon, which breaks the inversion symmetry to generate nonzero second order optical resp