ﻻ يوجد ملخص باللغة العربية
Using polarized neutron diffraction and x-ray resonant magnetic scattering (XRMS) techniques, multiple phase transitions were revealed in an underdoped, non-superconducting Eu(Fe$_{1-x}$Ir$_{x}$)$_{2}$As$_{2}$ ($mathit{x}$ = 0.06) single crystal. Compared with the parent compound EuFe$_{2}$As$_{2}$, the tetragonal-to-orthorhombic structural phase transition and the antiferromagnetic order of the Fe$^{2+}$ moments are significantly suppressed to $mathit{T_{S}}$ = 111 (2) K and $mathit{T_{N,Fe}}$= 85 (2) K by 6% Ir doping, respectively. In addition, the Eu$^{2+}$ spins order within the $mathit{ab}$ plane in the A-type antiferromagnetic structure similar to the parent compound. However, the order temperature is evidently suppressed to $mathit{T_{N,Eu}}$= 16.0 (5) K by Ir doping. Most strikingly, the XRMS measurements at the Ir $mathit{L_{3}}$ edge demonstrates that the Ir 5$mathit{d}$ states are also magnetically polarized, with the same propagation vector as the magnetic order of Fe. With $mathit{T_{N,Ir}}$ = 12.0 (5) K, they feature a much lower onset temperature compared with $mathit{T_{N,Fe}}$. Our observation suggests that the magnetism of the Eu sublattice has a considerable effect on the magnetic nature of the 5$mathit{d}$ Ir dopant atoms and there exists a possible interplay between the localized Eu$^{2+}$ moments and the conduction $mathit{d}$-electrons on the FeAs layers.
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macr
The effects of hydrostatic pressure on the static magnetism in Eu(Fe$_{0.925}$Co$_{0.075}$)$_{2}$As$_{2}$ are investigated by complementary electrical resistivity, ac magnetic susceptibility and single-crystal neutron diffraction measurements. A spec
Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long range magnetic order in the family of pyrochlore iridates, R$_{2}$Ir$_{2}$O$_{7}$ (R = lanthanide)$^{1}$. As a consequence, Pr$_{2}$Ir$_{2}$O$_{7}$
We report Resonant Inelastic X-ray Scattering (RIXS) study of the magnetic excitation spectrum in a highly insulating Eu$_{2}$Ir$_{2}$O$_{7}$ single crystal that exhibits a metal-insulator transition at $T_{MI}$ = 111(7) K. A propagating magnon mode
The interplay between superconductivity and Eu$ ^{2+}$ magnetic moments in EuFe$_2$(As$_{1-x}$P$_x$)$_2$ is studied by electrical resistivity measurements under hydrostatic pressure on $x=0.13$ and $x=0.18$ single crystals. We can map hydrostatic pre