ترغب بنشر مسار تعليمي؟ اضغط هنا

The Superconducting Magnet for ADS Injection-I

47   0   0.0 ( 0 )
 نشر من قبل Xiangchen Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cryomodule I for ADS Injection-I had been designed, fabricated and online tested. The CM1 contains seven superconducting magnets, seven superconducting spoke cavities and seven beam position monitors. The superconducting magnet, which is a kind of multifunction magnet in a 170mm length axial space, contains a solenoid for beam focusing and two correctors for orbit correction. The design goals for the magnets are to meet the required integral field strength and to reduce the leakage field of less than 2 G at the nearby superconducting spoke cavities. The 2.1K, 31 mbar cryogenic system, where the magnets and spoke cavities shared with, force the magnet must select a kind of conduction cooled current leads. The first one of the batch magnets was tested in a vertical Dewar in HIT in July, 2014. The measurement results met the design requirements. Online operation of CM1 in September, 2015 showed that seven magnets can work at 230A under 4.2K and 2.1K respectively. This paper will present the magnet and current lead design, field measurement and the installation progress.

قيم البحث

اقرأ أيضاً

The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed a fter some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.
A klystron beam focusing system using permanent magnets, which increases reliability in comparison with electromagnet focusing system, is reported. A prototype model has been designed and fabricated for a 1.3 GHz, 800 kW klystron for evaluation of th e feasibility of the focusing system with permanent magnets. In order to decrease the production cost and to mitigate complex tuning processes of the magnetic field, anisotropic ferrite magnet is adopted as the magnetic material. As the result of a power test, 798 kW peak output power was successfully achieved with the prototype focusing system. Considering a power consumption of the electromagnet focusing system, the required wall-plug power to produce nominal 800 kW output power with the permanent magnet system is less than that with electromagnet. However, the power conversion efficiency of the klystron with the permanent magnet system was found to be limited by transverse multipole magnetic fields. By decreasing transverse multipole magnetic field components, especially the dipole and the quadrupole, the power conversion efficiency would approach to that with electromagnets.
The 10 MeV accelerator-driven subcritical system (ADS) Injector-I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The Injector adopted a four vane copper structure RFQ with output energy of 3.2 MeV and a superconducting (SC) section accommodating fourteen b{eta}g=0.12 single spoke cavities, fourteen SC solenoids and fourteen cold BPMs. The ion source was installed since April of 2014, periods of commissioning are regularly scheduled between installation phases of the rest of the injector. Continuous wave (CW) beam was shooting through the injector and 10 MeV CW proton beam with average beam current around 2 mA was obtained recently. This contribution describe the results achieved so far and the difficulties encountered in CW commissioning.
The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconduc ting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.
Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After accelera tion, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا