ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal Disruption Events Prefer Unusual Host Galaxies

135   0   0.0 ( 0 )
 نشر من قبل Decker French
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Decker French




اسأل ChatGPT حول البحث

Tidal Disruption Events (TDEs) are transient events observed when a star passes close enough to a supermassive black hole to be tidally destroyed. Many TDE candidates have been discovered in host galaxies whose spectra have weak or no line emission yet strong Balmer line absorption, indicating a period of intense star formation that has recently ended. As such, TDE host galaxies fall into the rare class of quiescent Balmer-strong galaxies. Here, we quantify the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) with spectral properties like those of TDE hosts, determining the extent to which TDEs are over-represented in such galaxies. Galaxies whose spectra have Balmer absorption H$delta_{rm A}$ $-$ $sigma$(H$delta_{rm A}$) $>$ 4 AA (where $sigma$(H$delta_{rm A}$) is the error in the Lick H$delta_{rm A}$ index) and H$alpha$ emission EW $<$ $3$ AA have had a strong starburst in the last $sim$Gyr. They represent 0.2% of the local galaxy population, yet host 3 of 8 (37.5%) optical/UV-selected TDE candidates. A broader cut, H$delta_{rm A} >$ 1.31 AA and H$alpha$ EW $<$ $3$ AA, nets only 2.3% of SDSS galaxies, but 6 of 8 (75%) optical/UV TDE hosts. Thus, quiescent Balmer-strong galaxies are over-represented among the TDE hosts by a factor of 33-190. The high-energy-selected TDE Swift J1644 also lies in a galaxy with strong Balmer lines and weak H$alpha$ emission, implying a $>80times$ enhancement in such hosts and providing an observational link between the $gamma$/X-ray-bright and optical/UV-bright TDE classes.



قيم البحث

اقرأ أيضاً

206 - K. Decker French 2020
Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date and quantify their distributions. We consider throughout the differences between observationally-identified types of TDEs and differences from spectroscopic control samples of galaxies. We focus here on the black hole and stellar masses of TDE host galaxies, their star formation histories and stellar populations, the concentration and morphology of the optical light, the presence of AGN activity, and the extra-galactic environment of the TDE hosts. We summarize the state of several possible explanations for the links between the TDE rate and host galaxy type. We present estimates of the TDE rate for different host galaxy types and quantify the degree to which rate enhancement in some types results in rate suppression in others. We discuss the possibilities for using TDE host galaxies to assist in identifying TDEs in upcoming large transient surveys and possibilities for TDE observations to be used to study their host galaxies.
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin g otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10 to 1000 Myr ago, indicating that TDEs arise at differ ent times in their hosts post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5-10% for most hosts, not enough to explain the observed 30-200x boost in TDE rates, suggesting that the hosts core stellar concentration is more important. TDE hosts have stellar masses 10^9.4 - 10^10.3 Msun, consistent with the SDSS volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10^5.5 - 10^7.5 Msun. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.
131 - Renyue Cen 2019
A starburst induced by a galaxy merger may create a relatively thin central stellar disk at radius $le 100$pc. We calculate the rate of tidal disruption events (TDEs) by the inspiraling secondary supermassive black (SMBH) through the disk. With a sma ll enough stellar velocity dispersion ($sigma/v_c le 0.1$) in the disk, it is shown that $10^5-10^6$ TDEs of solar-type main sequence stars per post-starburst galaxy (PSB) can be produced to explain their dominance in producing observed TDEs. Although the time it takes to bring the secondary SMBH to the disk apparently varies in the range of $sim 0.1-1$Gyr since the starburst, depending on its landing location and subsequently due to dynamical friction with stars exterior to the central stellar disk in question, the vast majority of TDEs by the secondary SMBH in any individual PSB occurs within a space of time shorter than $sim 30$Myr. Five unique testable predictions of this model are suggested.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا