ترغب بنشر مسار تعليمي؟ اضغط هنا

Pionic dispersion relations in the presence of a weak magnetic field

102   0   0.0 ( 0 )
 نشر من قبل Souvik Priyam Adhya
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, dispersion relations of $pi^0$ and $pi^{pm}$ have been studied in vacuum in the limit of weak external magnetic field using a phenomenological pion-nucleon $(pi N)$ Lagrangian. For our purpose, we have calculated the results up to one loop order in self energy diagrams with the pseudoscalar $(PS)$ and pseudovector $(PV)$ pion-nucleon interactions. By assuming weak external magnetic field it is seen that the effective mass of pion gets explicit magnetic field dependence and it is modified significantly for the case of PS coupling. However, for the PV coupling, only a modest increase in the effective mass is observed. These modified dispersion relations due to the presence of the external field can have substantial influence in the phenomenological aspect of the mesons both in the context of neutron stars as well as relativistic heavy ion collisions.

قيم البحث

اقرأ أيضاً

57 - Si-wen Li , Tuo Jia 2016
We construct the gravitational solution of the Witten-Sakai-Sugimoto model by introducing a magnetic field on the flavor brane. With taking into account their backreaction, we re-solve the type IIA supergravity in the presence of the magnetic field. Our calculation shows the gravitational solutions are magnetic-dependent and analytic both in the bubble (confined) and black brane (deconfined) case. We study the dual field theory at the leading order in the ratio of the number of flavors and colors, also in the Veneziano limit. Some physical properties related to the hadronic physics in an external magnetic field are discussed by using our confined backreaction solution holographically. We also investigate the thermodynamics and holographic renormalization of this model in both phases by our solution. Since the backreaction of the magnetic field is considered in our gravitational solution, it allows us to study the Hawking-Page transition with flavors and colors of this model in the presence of the magnetic field. Finally we therefore obtain the holographic phase diagram with the contributions from the flavors and the magnetic field. Our holographic phase diagram is in agreement with lattice QCD result qualitatively, which thus can be interpreted as the inhibition of confinement or chirally broken symmetry by the magnetic field.
The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied. Starting from Schwingers proper-time representation, we express the charged fermion propagator as an infinite series corresponding to different Land au levels. This infinite series is then reorganized according to the powers of the external field strength $B$. For illustration, we apply this expansion to $gammato ubar{ u}$ and $ uto ugamma$ decays, which involve charged fermions in the internal loop. The leading and subleading magnetic-field effects to the above processes are computed.
In this work, the self energies of $pi^0$ and $pi^{pm}$ up to one loop order have been calculated in the limit of weak external magnetic field. The effective masses are explicitly dependent on the magnetic field which are modified significantly for t he pseudoscalar coupling due to weak field approximation of the external field. On the other hand, for the pseudovector coupling, there is a modest increment in the effective masses of the pions. These theoretical developments are relevant for the study of the phenomenological aspect of mesons in the context of neutron stars as well as heavy ion collisions.
We calculate the momentum dependence of the $rho^0-omega$ mixing amplitude in vacuum with vector nucleon-nucleon interaction in presence of a constant homogeneous weak magnetic field background. The mixing amplitude is generated by the nucleon-nucleo n ($NN$) interaction and thus driven by the neutron-proton mass difference along with a constant magnetic field. We find a significant effect of magnetic field on the mixing amplitude. We also calculate the Charge symmetry violating (CSV) $NN$ potential induced by the magnetic field dependent mixing amplitude. The presence of the magnetic field influences the $NN$ potential substantially which can have important consequences in highly magnetized astrophysical compact objects, such as magnetars. The most important observation of this work is that the mixing amplitude is non-zero, leading to positive contribute to the CSV potential if the proton and neutron masses are taken to be equal.
We calculate the rho meson mass in a weak magnetic field using effective $rhopipi$ interaction. It is seen that both $rho^0$ and $rho^pm$ masses decrease with the magnetic field in vacuum. $rho$ meson dispersion relation has been calculated and shown to be different for $rho^0$ and $rho^pm$. We also calculate the $rhopipi$ decay width and spectral functions of $rho^0$ and $rho^pm$. The width is seen to decrease with $eB$ and the spectral functions become narrower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا