ﻻ يوجد ملخص باللغة العربية
Aims: Recently, cosmological fast radio bursts (FRBs) have been used to provide the most stringent limit up to date on Einsteins Equivalence Principle (EEP). We study how to further test EEP with FRBs. Methods: Future systematic radio surveys will certainly find abundant FRBs at cosmological distances and some of them will inevitably be located behind clusters of galaxies. Here we suggest to use those FRBs to further test EEP. Results: We find that the robustness and accuracy of testing EEP can be improved further by orders of magnitude with these FRBs. The same methodology can also be applied to any other types of fast and bright transients at cosmological distances.
Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on di
We propose and apply a new test of Einsteins Equivalence Principle (EEP) based on the gravitational redshift induced by the central super massive black hole of quasars in the surrounding accretion disk. Specifically, we compare the observed gravitati
We report here the results of operation of a torsion balance with a period of $sim 1.27 times 10^4$ s. The analysis of data collected over a period of $sim$115 days shows that the difference in the accelerations towards the Galactic Center of test bo
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with th
We consider the problem of testing the Einstein Equivalence Principle (EEP) by measuring the gravitational redshift with two Earth-orbiting stable atomic clocks. For a reasonably restricted class of orbits we find an optimal experiment configuration