ﻻ يوجد ملخص باللغة العربية
In this paper the extension of the functional setting customarily adopted in General Relativity (GR) is considered. For this purpose, an explicit solution of the so-called Einsteins Teleparallel problem is sought. This is achieved by a suitable extension of the traditional concept of GR reference frame and is based on the notion of non-local point transformation (NLPT). In particular, it is shown that a solution to the said problem can be reached by introducing a suitable subset of transformations denoted here as textit{special} textit{NLPT}. These are found to realize a phase-space transformation connectingemph{}the flat Minkowski space-time with, in principle, an arbitrary curved space-time. The functional setting and basic properties of the new transformations are investigated.
The problem is posed of further extending the axiomatic construction proposed in Part 1 for non-local point transformations mapping in each other different curved space times. The new transformations apply to curved space times when expressed in arbi
This paper is motivated by the introduction of a new functional setting of General Relativity (GR) based on the adoption of suitable group non-local point transformations (NLPT). Unlike the customary local point transformatyion usually utilized in GR
We study teleparallel gravity in the emph{original} Kaluza-Klein (KK) scenario. Our calculation of the KK reduction of teleparallel gravity indicates that the 5-dimensional torsion scalar $^{(5)}T$ generates the non-Brans-Dicke type effective Lagrang
Teleparallel gravity has significantly increased in popularity in recent decades, bringing attention to Einsteins other theory of gravity. In this Review, we relate this form of geometry to the broader metric-affine approach to forming gravitational
We construct a Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity by employing the Weyl compensator formalism. The low-energy dynamics has a single spin two gravition without a scalar degree of freedom. By construction,