ﻻ يوجد ملخص باللغة العربية
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit $N rightarrow infty$) non-interacting oscillators vibrating at the same frequency ($omega$). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einsteins model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying $N$.
The theory of small-system thermodynamics was originally developed to extend the laws of thermodynamics to length scales of nanometers. Here we review this nanothermodynamics, and stress how it also applies to large systems that subdivide into a hete
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten
We study dipolarly coupled three dimensional spin systems in both the microcanonical and the canonical ensembles by introducing appropriate numerical methods to determine the microcanonical temperature and by realizing a canonical model of heat bath.
In this paper, we use the dimer method to obtain the free energy of Ising models consisting of repeated horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N$ arbitrary, to
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact w