ترغب بنشر مسار تعليمي؟ اضغط هنا

Compositional characterisation of the Themis family

98   0   0.0 ( 0 )
 نشر من قبل Micha\\\"el Marsset
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired NIR spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (<2mum) similar to those found in CPIDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids. Results. Our best-matching models indicate that most objects in our sample possess a surface composition that is consistent with the composition of CP IDPs.We find ultra-fine grained Fe-bearing olivine glasses to be among the dominant constituents. We further detect the presence of minor fractions of Mg-rich crystalline silicates. The few unsuccessfully matched asteroids may indicate the presence of interlopers in the family or objects sampling a distinct compositional layer of the parent body. Conclusions. The composition inferred for the Themis family members suggests that the parent body accreted from a mixture of ice and anhydrous silicates (mainly amorphous) and subsequently underwent limited heating. By comparison with existing thermal models that assume a 400km diameter progenitor, the accretion process of the Themis parent body must have occurred relatively late (>4Myr after CAIs) so that only moderate internal heating occurred in its interior, preventing aqueous alteration of the outer shell.



قيم البحث

اقرأ أيضاً

Recent dynamical analyses suggest that some Jupiter family comets (JFCs) may originate in the main asteroid belt instead of the outer solar system. This possibility is particularly interesting given evidence that icy main-belt objects are known to be present in the Themis asteroid family. We report results from dynamical analyses specifically investigating the possibility that icy Themis family members could contribute to the observed population of JFCs. Numerical integrations show that such dynamical evolution is indeed possible via a combination of eccentricity excitation apparently driven by the nearby 2:1 mean-motion resonance with Jupiter, gravitational interactions with planets other than Jupiter, and the Yarkovsky effect. We estimate that, at any given time, there may be tens of objects from the Themis family on JFC-like orbits with the potential to mimic active JFCs from the outer solar system, although not all, or even any, may necessarily be observably active. We find that dynamically evolved Themis family objects on JFC-like orbits have semimajor axes between 3.15 au and 3.40 au for the vast majority of their time on such orbits, consistent with the strong role that the 2:1 mean-motion resonance with Jupiter likely plays in their dynamical evolution. We conclude that a contribution from the Themis family to the active JFC population is plausible, although further work is needed to better characterize this contribution.
112 - Haoxuan Jiang , Jianghui Ji 2021
Themis family is one of the largest and oldest asteroid populations in the main-belt. Water-ice may widely exist on the parent body (24) Themis. In this work, we employ the Advanced Thermophysical Model as well as mid-infrared measurements from NASAs Wide-Field Infrared Survey Explorer to explore thermal parameters of 20 Themis family members. Here we show that the average thermal inertia and geometric albedo are ~$39.5pm26.0 ~rm J m^{-2} s^{-1/2} K^{-1}$ and $0.067pm0.018$, respectively. The family members have a relatively moderate roughness fraction on their surfaces. We find that the relatively low albedos of Themis members are consistent with the typical values of B-type and C-type asteroids. As aforementioned, Themis family bears a very low thermal inertia, which indicates a fine and mature regolith on their surfaces. The resemblance of thermal inertia and geometric albedo of Themis members may reveal their close connection in origin and evolution. In addition, we present the compared results of thermal parameters for several prominent families.
102 - I. Ferrin , M. Perez , J. Rendon 2017
From 1996 to 2015 sixteen main belt asteroids were discovered exhibiting cometary activity (less than one per year), all of them during searches at the telescope. In this work we will explore another way to discover them. We reduced 192016 magnitude observations of 165 asteroids of the Themis family, using data from the astrometric-photometric database of the Minor Planet Center, MPCOBS, and measuring the absolute magnitudes from the phase plots. 25 objects of 165 (15.2%), exhibited bumps or enhancements in brightness that might indicate low level cometary activity. Since activity repeats at the same place in different orbits and in many occasions is centered at perihelion, activity might be due to water ice sublimation. As of September 2016, there are 717768 asteroids listed in the MPC files. If we assume that we do not have any false positives and the above percentage can be extrapolated to the whole Main Belt, the number of potentially active asteroid gets to the very large number of ~111.000. This number is much larger than the ones predicted in previous surveys and indicates one of three scenarios: A) there are many false positives in our detections and the real number of active asteroid is much smaller than we found, implying that the MPC astrometric-photometric database is only astrometric and not photometric. B) The location of active asteroids is restricted to the Themis family and an extrapolation to the whole belt is not possible. Or C) there are few false positives in our candidates and the main belt actually contains many low level active asteroids undetected by current surveys. Case C) would imply that the main belt is not a field of bare rocks but a graveyard of extinct comets, changing our current paradigm of the main belt. So it is of the outmost importance to verify observationally our candidates, and determine which of these scenarios is valid.
All asteroids are currently classified as either family, originating from the disruption of known bodies, or non-family. An outstanding question is the origin of these non-family asteroids. Were they formed individually, or as members of known famili es but with chaotically evolving orbits, or are they members of old ghost families, that is, asteroids with a common parent body but with orbits that no longer cluster in orbital element space? Here, we show that the sizes of the non-family asteroids in the inner belt are correlated with their orbital eccentricities and anticorrelated with their inclinations, suggesting that both non-family and family asteroids originate from a small number of large primordial planetesimals. We estimate that ~85% of the asteroids in the inner main belt originate from the Flora, Vesta, Nysa, Polana and Eulalia families, with the remaining ~15% originating from either the same families or, more likely, a few ghost families. These new results imply that we must seek explanations for the differing characteristics of the various meteorite groups in the evolutionary histories of a few, large, precursor bodies. Our findings also support the model that asteroids formed big through the gravitational collapse of material in a protoplanetary disk.
We report the results of a search for a dust trail aligned with the orbit plane of the large main-belt asteroid (24) Themis, which has been reported to have water ice frost on its surface. Observations were obtained with the GMOS instrument on the Ge mini-North Observatory in imaging mode, where we used a chip gap to block much of the light from the asteroid, allowing us to take long exposures while avoiding saturation by the object. No dust trail is detected within 2 of Themis to a 3-sigma limiting surface brightness magnitude of 29.7 mag/arcsec^2, as measured along the expected direction of the dust trail. Detailed consideration of dust ejection physics indicates that particles large enough to form a detectable dust trail were unlikely to be ejected as a result of sublimation from an object as large as Themis. We nonetheless demonstrate that our observations would have been capable of detecting faint dust emission as close as 20 from the object, even in a crowded star field. This approach could be used to conduct future searches for sublimation-generated dust emission from Themis or other large asteroids closer to perihelion than was done in this work. It would also be useful for deep imaging of collisionally generated dust emission from large asteroids at times when the visibility of dust features are expected to be maximized, such as during orbit plane crossings, during close approaches to the Earth, or following detected impact events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا