ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic fluctuations and dissipation in an integrated dynamical model

80   0   0.0 ( 0 )
 نشر من قبل Koichi Murase
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new integrated dynamical model to investigate the effects of the hydrodynamic fluctuations on observables in high-energy nuclear collisions. We implement hydrodynamic fluctuations in a fully 3-D dynamical model consisting of the hydrodynamic initialization models of the Monte-Carlo Kharzeev-Levin-Nardi model, causal dissipative hydrodynamics and the subsequent hadronic cascades. By analyzing the hadron distributions obtained by massive event-by-event simulations with both of hydrodynamic fluctuations and initial-state fluctuations, we discuss the effects of hydrodynamic fluctuations on the flow harmonics, $v_n$ and their fluctuations.

قيم البحث

اقرأ أيضاً

281 - Koichi Murase 2019
To integrate hydrodynamic fluctuations, namely thermal fluctuations of hydrodynamics, into dynamical models of high-energy nuclear collisions based on relativistic hydrodynamics, the property of the hydrodynamic fluctuations given by the fluctuation- dissipation relation should be carefully investigated. The fluctuation-dissipation relation for causal dissipative hydrodynamics with the finite relaxation time is naturally given in the integral form of the constitutive equation by the linear-response theory. While, the differential form of the constitutive equation is commonly used in analytic investigations and dynamical calculations for practical reasons. We give the fluctuation-dissipation relation for the general linear-response differential form and discuss the restrictions to the structure of the differential form, which comes from the causality and the positive semi-definiteness of the noise autocorrelation, and also the relation of those restrictions to the cutoff scale of the hydrodynamic fluctuations. We also give the fluctuation-dissipation relation for the integral form in non-static and inhomogeneous background by introducing new tensors, the pathline projectors. We find new modification terms to the fluctuation-dissipation relation for the differential form in non-static and inhomogeneous background which are particularly important in dynamical models to describe rapidly expanding systems.
252 - Chun Shen , Bjorn Schenke 2018
We present a fully three-dimensional model providing initial conditions for energy and conserved charge density distributions in heavy ion collisions at RHIC Beam Energy Scan (BES) collision energies. The model includes the dynamical deceleration of participating nucleons or valence quarks. It provides a realistic estimation of the initial baryon stopping during the early stage of collisions. We also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation. The importance of this dynamical initialization stage on hadronic flow observables at the RHIC BES is quantified.
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obta in the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car
We study time evolution of critical fluctuations of conserved charges near the QCD critical point in the context of relativistic heavy ion collisions. A stochastic diffusion equation is employed in order to describe the diffusion property of the crit ical fluctuation arising from the coupling of the order parameter field to conserved charges. We show that the diffusion property gives rise to a possibility of probing the early time fluctuations through the rapidity window dependence of the second-order cumulant and correlation function of conserved charges. It is pointed out that their non-monotonic behaviors as functions of the rapidity interval are robust experimental signals for the existence of the critical enhancement around the QCD critical point.
We investigate $phi$ meson photoproduction on the nucleon and the uclide[4]{He} targets within a dynamical model approach based on a Hamiltonian which describes the production mechanisms by the Pomeron-exchange, meson-exchanges, $phi$ radiations, an d nucleon resonance excitations mechanisms. The final $phi N$ interactions are included being described by the gluon-exchange, direct $phi N$ couplings, and the box-diagrams arising from the couplings with $pi N$, $rho N$, $KLambda$, and $KSigma$ channels. The parameters of the Hamiltonian are determined by the experimental data of $gamma p to phi p$ from the CLAS Collaboration. The resulting Hamiltonian is then used to predict the coherent $phi$-meson production on the uclide[4]{He} targets by using the distorted-wave impulse approximation. For the proton target, the final $phi N$ rescattering effects, as required by the unitarity condition, are found to be very weak, which supports the earlier calculations in the literature. For the uclide[4]{He} targets, the predicted differential cross sections are in good agreement with the data obtained by the LEPS Collaboration. The role of each mechanism in this reaction is discussed and predictions for a wide range of scattering angles are presented, which can be tested in future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا