ﻻ يوجد ملخص باللغة العربية
We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. Although the particles predominantly swim normal to the free film surface, their motion also has a component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion). The dynamics of the film height profile is determined by three physical effects: the upward pushing force of the swimmers onto the liquid-gas interface that always destabilizes the flat film, the solutal Marangoni force due to gradients in the swimmer concentration that always acts stabilising, and finally the rotational diffusion of the swimmers together with the in-plance active motion that acts either stabilising or destabilising. After reviewing and extending the analysis of the linear stability of the flat film with uniform swimmer density, we analyse the full nonlinear dynamic equations and show that point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in highly regular (standing, travelling and modulated waves) and various irregular patterns for swimmer density and film height.
We consider a carpet of self-propelled particles at the liquid-gas interface of a liquid film on a solid substrate. The particles excert an excess pressure on the interface and also move along the interface while the swimming direction performs rotat
Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile particles moving in a sol
We describe colloidal Janus particles with metallic and dielectric faces that swim vigorously when illuminated by defocused optical tweezers without consuming any chemical fuel. Rather than wandering randomly, these optically-activated colloidal swim
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still
Active particles with their characteristic feature of self-propulsion are regarded as the simplest models for motility in living systems. The accumulation of active particles in low activity regions has led to the general belief that chemotaxis requi