ﻻ يوجد ملخص باللغة العربية
Motivated by recent experimental progress in the context of ultra-cold multi-color fermionic atoms in optical lattices, we have developed a method to exactly diagonalize the Heisenberg $SU(N)$ Hamiltonian with several particles per site living in a fully symmetric or antisymmetric representation of $SU(N)$. The method, based on the use of standard Young tableaux, takes advantage of the full $SU(N)$ symmetry, allowing one to work directly in each irreducible representations of the global $SU(N)$ group. Since the $SU(N)$ singlet sector is often much smaller than the full Hilbert space, this enables one to reach much larger system sizes than with conventional exact diagonalizations. The method is applied to the study of Heisenberg chains in the symmetric representation with two and three particles per site up to $N=10$ and up to 20 sites. For the length scales accessible to this approach, all systems except the Haldane chain ($SU(2)$ with two particles per site) appear to be gapless, and the central charge and scaling dimensions extracted from the results are consistent with a critical behaviour in the $SU(N)$ level $k$ Wess-Zumino-Witten universality class, where $k$ is the number of particles per site. These results point to the existence of a cross-over between this universality class and the asymptotic low-energy behavior with a gapped spectrum or a critical behavior in the $SU(N)$ level $1$ WZW universality class.
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labelled by the set of {it standard Young tableaux} in which the matrix of the Heisenberg SU(N)
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as w
The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the
We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical
One dimensional SU($n$) chains with the same irreducible representation $mathcal{R}$ at each site are considered. We determine which $mathcal{R}$ admit low-energy mappings to a $text{SU}(n)/[text{U}(1)]^{n-1}$ flag manifold sigma model, and calculate