ﻻ يوجد ملخص باللغة العربية
Coherent Raman scattering spectroscopy is studied purposely, with the Gaussian ultrashort pulses as a hands-on elucidatory extraction tool of the clean coherent Raman resonant spectra from the overall measured data contaminated with the non-resonant four wave mixing background. The integral formulae for both the coherent anti-Stokes and Stokes Raman scattering are given in the semiclassical picture, and the closed-form solutions in terms of a complex error function are obtained. An analytic form of maximum enhancement of pure coherent Raman spectra at threshold time delay depending on bandwidth of probe pulse is also obtained. The observed experimental data for pyridine in liquid-phase are quantitatively elucidated and the inferred time-resolved coherent Raman resonant results are reconstructed with a new insight.
Since its first demonstration in the sixties, coherent anti-Stokes Raman scattering (CARS) has become a powerful spectroscopic sensing tool with broad applications in biology and chemistry. However, it is a complex nonlinear optical process that ofte
We report stimulated Raman spectroscopy of the G phonon in both single and multi-layer graphene, through Coherent anti-Stokes Raman Scattering (CARS). The signal generated by the third order nonlinearity is dominated by a vibrationally non-resonant b
The production of correlated Stokes (S) and anti-Stokes (aS) photons (SaS process) mediated by real or virtual phonon exchange has been reported in many transparent materials. In this work, we investigate the polarization and time correlations of SaS
We develop an ultrafast frequency-resolved Raman spectroscopy with entangled photons for polyatomic molecules in condensed phases, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the
Gamma-ray bursts (GRBs) show different behaviours and trends in their spectral evolution. One of the methods used to understand the physical origin of these behaviours is to study correlation between the spectral fit parameters. In this work, we used