ترغب بنشر مسار تعليمي؟ اضغط هنا

G-CNN: an Iterative Grid Based Object Detector

120   0   0.0 ( 0 )
 نشر من قبل Mahyar Najibi
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.

قيم البحث

اقرأ أيضاً

For reliable environment perception, the use of temporal information is essential in some situations. Especially for object detection, sometimes a situation can only be understood in the right perspective through temporal information. Since image-bas ed object detectors are currently based almost exclusively on CNN architectures, an extension of their feature extraction with temporal features seems promising. Within this work we investigate different architectural components for a CNN-based temporal information extraction. We present a Temporal Feature Network which is based on the insights gained from our architectural investigations. This network is trained from scratch without any ImageNet information based pre-training as these images are not available with temporal information. The object detector based on this network is evaluated against the non-temporal counterpart as baseline and achieves competitive results in an evaluation on the KITTI object detection dataset.
80 - Xun Yuan , Ke Hu , 2020
The local feature detector and descriptor are essential in many computer vision tasks, such as SLAM and 3D reconstruction. In this paper, we introduce two separate CNNs, lightweight SobelNet and DesNet, to detect key points and to compute dense local descriptors. The detector and the descriptor work in parallel. Sobel filter provides the edge structure of the input images as the input of CNN. The locations of key points will be obtained after exerting the non-maximum suppression (NMS) process on the output map of the CNN. We design Gaussian loss for the training process of SobelNet to detect corner points as keypoints. At the same time, the input of DesNet is the original grayscale image, and circle loss is used to train DesNet. Besides, output maps of SobelNet are needed while training DesNet. We have evaluated our method on several benchmarks including HPatches benchmark, ETH benchmark, and FM-Bench. SobelNet achieves better or comparable performance with less computation compared with SOTA methods in recent years. The inference time of an image of 640x480 is 7.59ms and 1.09ms for SobelNet and DesNet respectively on RTX 2070 SUPER.
135 - Ziwei Wang , Ziyi Wu , Jiwen Lu 2020
In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constra ined representational capacity, so that the information redundancy in the networks causes numerous false positives and degrades the performance significantly. On the contrary, our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal, through which the detection precision is enhanced with alleviated false positives. Specifically, we generalize the information bottleneck (IB) principle to object detection, where the amount of information in the high-level feature maps is constrained and the mutual information between the feature maps and object detection is maximized. Meanwhile, we learn sparse object priors so that the posteriors are concentrated on informative detection prediction with false positive elimination. Extensive experiments on the PASCAL VOC and COCO datasets show that our method outperforms the state-of-the-art binary neural networks by a sizable margin.
Many previous methods have demonstrated the importance of considering semantically relevant objects for carrying out video-based human activity recognition, yet none of the methods have harvested the power of large text corpora to relate the objects and the activities to be transferred into learning a unified deep convolutional neural network. We present a novel activity recognition CNN which co-learns the object recognition task in an end-to-end multitask learning scheme to improve upon the baseline activity recognition performance. We further improve upon the multitask learning approach by exploiting a text-guided semantic space to select the most relevant objects with respect to the target activities. To the best of our knowledge, we are the first to investigate this approach.
360{deg} images are usually represented in either equirectangular projection (ERP) or multiple perspective projections. Different from the flat 2D images, the detection task is challenging for 360{deg} images due to the distortion of ERP and the inef ficiency of perspective projections. However, existing methods mostly focus on one of the above representations instead of both, leading to limited detection performance. Moreover, the lack of appropriate bounding-box annotations as well as the annotated datasets further increases the difficulties of the detection task. In this paper, we present a standard object detection framework for 360{deg} images. Specifically, we adapt the terminologies of the traditional object detection task to the omnidirectional scenarios, and propose a novel two-stage object detector, i.e., Reprojection R-CNN by combining both ERP and perspective projection. Owing to the omnidirectional field-of-view of ERP, Reprojection R-CNN first generates coarse region proposals efficiently by a distortion-aware spherical region proposal network. Then, it leverages the distortion-free perspective projection and refines the proposed regions by a novel reprojection network. We construct two novel synthetic datasets for training and evaluation. Experiments reveal that Reprojection R-CNN outperforms the previous state-of-the-art methods on the mAP metric. In addition, the proposed detector could run at 178ms per image in the panoramic datasets, which implies its practicability in real-world applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا