ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum limit in subnanometre-gap tip-enhanced nanoimaging of few-layer MoS2

83   0   0.0 ( 0 )
 نشر من قبل Dmitri Voronine
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, defects, edge states, grain boundaries and surface functionalization. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Here we overcome the diffraction limit by using resonant tip-enhanced Raman scattering (TERS) of few-layer MoS2, and obtain nanoscale optical images with ~ 20 nm spatial resolution. This becomes possible due to electric field enhancement in an optimized subnanometre-gap resonant tip-substrate configuration. We investigate the limits of signal enhancement by varying the tip-sample gap with sub-Angstrom precision and observe a quantum quenching behavior, as well as a Schottky-Ohmic transition, for subnanometre gaps, which enable surface mapping based on this new contrast mechanism. This quantum regime of plasmonic gap-mode enhancement with a few nanometre thick MoS2 junction may be used for designing new quantum optoelectronic devices and sensors.



قيم البحث

اقرأ أيضاً

The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration (CPG). Here we use continuous wave photomodulation spectroscopy to identify the optical signature of long-lived charge carriers and femtosecond pump-probe spectroscopy to follow the CPG dynamics. We find that intitial photoexcitation yields a branching between excitons and charge carriers, followed by excitation energy dependent hot exciton dissociation as an additional CPG mechanism. Based on these findings, we make simple suggestions for the design of more efficient MoS2 photovoltaic and photodetector devices.
Tip-enhanced nano-spectroscopy and -imaging, such as tip-enhanced photoluminescence (TEPL), tip-enhanced Raman spectroscopy (TERS), and others, have become indispensable from materials science to single molecule studies. However, the techniques suffe r from inconsistent performance due to lack of nanoscale control of tip apex structure, which often leads to irreproducible spectral, spatial, and polarization resolved imaging. Instead of refining tip-fabrication to resolve this problem, we pursue the inverse approach of optimizing the nano-optical vector-field at the tip apex via adaptive optics. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS, with performance exceeding what can be achieved by conventional tip-fabrication and optimal excitation polarization. Employing a sequence feedback algorithm, we achieve 4.4$times$10$^4$-fold TEPL enhancement of a WSe$_2$ monolayer which is >2$times$ larger than the normal TEPL intensity without wavefront shaping, as well as the largest plasmon-enhanced PL intensity of a transition metal dichalcogenide (TMD) monolayer reported to date. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue (BCB) molecules as well as the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced spectroscopy and imaging thus provides for a new systematic approach towards computational nanoscopy making optical nano-imaging more robust, versatile, and widely deployable.
Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, the physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, grain boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering (TERS) and photoluminescence (TEPL) nano-spectroscopy and -imaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition (PVD). With <15 nm spatial resolution we resolve nonlocal nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale, and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical and nano-mechanical imaging and spectroscopy thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials.
State-of-the-art fabrication and characterization techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with rea l time measurements of the absorbed laser power, which allowed us to determine the thermal conductivities without any assumptions. Measurements on MoS2 layers with thicknesses of 5 and 14 exhibit thermal conductivity in the range between 12 and 24 Wm-1K-1. Additionally, after determining the thermal conductivity of a selected MoS2 sample, an hBN flake was transferred onto it and the effective thermal conductivity of the heterostructure was subsequently measured. Remarkably, despite that the thickness of the hBN layer was less than a third of the thickness of the MoS2 layer, the heterostructure showed an almost eight-fold increase in the thermal conductivity, being able to dissipate more than 10 times the laser power without any visible sign of damage. These results are consistent with a high thermal interface conductance between MoS2 and hBN and an efficient in-plane heat spreading driven by hBN. Indeed, we estimate G 70 MWm-2K-1 which is significantly higher than previously reported values. Our work therefore demonstrates that the insertion of hBN layers in potential MoS2 based devices holds the promise for efficient thermal management.
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate rials, are rare due to technical challenges. In this work, we demonstrate in-situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defects scatterings that decrease the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be a crystalline-amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا